629 research outputs found

    Increasing human motor skill acquisition by driving theta-gamma coupling

    Get PDF
    Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude-modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimising functional improvements in response to training or therapy

    SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice.

    Get PDF
    DESIGN: Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). RESULTS: nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, Kras(G12D);p53(flox/-);p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. CONCLUSIONS: nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents

    Spatial Light Modulators for the Manipulation of Individual Atoms

    Full text link
    We propose a novel dipole trapping scheme using spatial light modulators (SLM) for the manipulation of individual atoms. The scheme uses a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.Comment: 9 pages, 5 figure

    CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA. Prior studies could not determine whether chemotherapy delivery or microenvironment modulation per se were the dominant features in treatment response, and such information could guide the optimal translation of these preclinical findings to patients. To distinguish between these possibilities, we used a chemical inhibitor of cytidine deaminase to stabilize and thereby artificially elevate gemcitabine levels in murine PDA tumors without disrupting the tumor microenvironment. Additionally, we used the FG-3019 monoclonal antibody (mAb) that is directed against the pleiotropic matricellular signaling protein connective tissue growth factor (CTGF/CCN2). Inhibition of cytidine deaminase raised the levels of activated gemcitabine within PDA tumors without stimulating neoplastic cell killing or decreasing the growth of tumors, whereas FG-3019 increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. The response to FG-3019 correlated with the decreased expression of a previously described promoter of PDA chemotherapy resistance, the X-linked inhibitor of apoptosis protein. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models, and by extension in PDA patients

    Quantum computing in optical microtraps based on the motional states of neutral atoms

    Get PDF
    We investigate quantum computation with neutral atoms in optical microtraps where the qubit is implemented in the motional states of the atoms, i.e., in the two lowest vibrational states of each trap. The quantum gate operation is performed by adiabatically approaching two traps and allowing tunneling and cold collisions to take place. We demonstrate the capability of this scheme to realize a square-root of swap gate, and address the problem of double occupation and excitation to other unwanted states. We expand the two-particle wavefunction in an orthonormal basis and analyze quantum correlations throughout the whole gate process. Fidelity of the gate operation is evaluated as a function of the degree of adiabaticity in moving the traps. Simulations are based on rubidium atoms in state-of-the-art optical microtraps with quantum gate realizations in the few tens of milliseconds duration range.Comment: 11 pages, 7 figures, for animations of the gate operation, see http://www.itp.uni-hannover.de/~eckert/na/index.htm

    A novel method for quantification of gemcitabine and its metabolites 2',2'-difluorodeoxyuridine and gemcitabine triphosphate in tumour tissue by LC-MS/MS: comparison with (19)F NMR spectroscopy.

    Get PDF
    PURPOSE: To develop a sensitive analytical method to quantify gemcitabine (2',2'-difluorodeoxycytidine, dFdC) and its metabolites 2',2'-difluorodeoxyuridine (dFdU) and 2',2'-difluorodeoxycytidine-5'-triphosphate (dFdCTP) simultaneously from tumour tissue. METHODS: Pancreatic ductal adenocarcinoma tumour tissue from genetically engineered mouse models of pancreatic cancer (KP ( FL/FL ) C and KP ( R172H/+) C) was collected after dosing the mice with gemcitabine. (19)F NMR spectroscopy and LC-MS/MS protocols were optimised to detect gemcitabine and its metabolites in homogenates of the tumour tissue. RESULTS: A (19)F NMR protocol was developed, which was capable of distinguishing the three analytes in tumour homogenates. However, it required at least 100 mg of the tissue in question and a long acquisition time per sample, making it impractical for use in large PK/PD studies or clinical trials. The LC-MS/MS protocol was developed using porous graphitic carbon to separate the analytes, enabling simultaneous detection of all three analytes from as little as 10 mg of tissue, with a sensitivity for dFdCTP of 0.2 ng/mg tissue. Multiple pieces of tissue from single tumours were analysed, showing little intra-tumour variation in the concentrations of dFdC or dFdU (both intra- and extra-cellular). Intra-tumoural variation was observed in the concentration of dFdCTP, an intra-cellular metabolite, which may reflect regions of different cellularity within a tumour. CONCLUSION: We have developed a sensitive LC-MS/MS method capable of quantifying gemcitabine, dFdU and dFdCTP in pancreatic tumour tissue. The requirement for only 10 mg of tissue enables this protocol to be used to analyse multiple areas from a single tumour and to spare tissue for additional pharmacodynamic assays

    Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer.

    Get PDF
    OBJECTIVE: Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. METHODS: Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. RESULTS: PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. CONCLUSIONS: The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer
    corecore