61 research outputs found
Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome.
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion
The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells
An in-depth proteomic comparison of human-induced pluripotent stem cells, and their parent fibroblast cells, with embryonic stem cells shows that the reprogramming process comprehensively remodels protein expression levels, creating cells that closely resemble natural stem cells
A Longitudinal Test of the Demand–Control Model Using Specific Job Demands and Specific Job Control
# The Author(s) 2010. This article is published with open access at Springerlink.com Background Supportive studies of the demand–control (DC) model were more likely to measure specific demands combined with a corresponding aspect of control. Purpose A longitudinal test of Karasek’s (Adm Sci Q. 24:285–308, 1) job strain hypothesis including specific measures of job demands and job control, and both selfreport and objectively recorded well-being. Method Job strain hypothesis was tested among 267 health care employees from a two-wave Dutch panel survey with a 2-year time lag. Results Significant demand/control interactions were found for mental and emotional demands, but not for physical demands. The association between job demands and job satisfaction was positive in case of high job control, whereas this association was negative in case of low job control. In addition, the relation between job demands and J. de Jonge (*
The Replication Database:Documenting the Replicability of Psychological Science
In psychological science, replicability—repeating a study with a new sample achieving consistent results (Parsons et al., 2022)—is critical for affirming the validity of scientific findings. Despite its importance, replication efforts are few and far between in psychological science with many attempts failing to corroborate past findings. This scarcity, compounded by the difficulty in accessing replication data, jeopardizes the efficient allocation of research resources and impedes scientific advancement. Addressing this crucial gap, we present the Replication Database (https://forrt-replications.shinyapps.io/fred_explorer), a novel platform hosting 1,239 original findings paired with replication findings. The infrastructure of this database allows researchers to submit, access, and engage with replication findings. The database makes replications visible, easily findable via a graphical user interface, and tracks replication rates across various factors, such as publication year or journal. This will facilitate future efforts to evaluate the robustness of psychological research
Recommended from our members
Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome.
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion
Recommended from our members
Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring.
Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring
Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring.
Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring
Bacillus subtilis remains translationally active after CRISPRi-mediated replication initiation arrest
ABSTRACTInitiation of bacterial DNA replication takes place at the origin of replication (oriC), a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. This process is tightly controlled by modulation of the availability or activity of DnaA and oriC during development or stress conditions. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. We successfully arrested replication in B. subtilis by employing a clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach to specifically target the key DnaA boxes 6 and 7, preventing DnaA binding to oriC. In this way, other functions of DnaA, such as a transcriptional regulator, were not significantly affected. When replication initiation was halted by this specific artificial and early blockage, we observed that non-replicating cells continued translation and cell growth, and the initial replication arrest did not induce global stress conditions such as the SOS response.IMPORTANCEAlthough bacteria constantly replicate under laboratory conditions, natural environments expose them to various stresses such as lack of nutrients, high salinity, and pH changes, which can trigger non-replicating states. These states can enable bacteria to (i) become tolerant to antibiotics (persisters), (ii) remain inactive in specific niches for an extended period (dormancy), and (iii) adjust to hostile environments. Non-replicating states have also been studied because of the possibility of repurposing energy for the production of additional metabolites or proteins. Using clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeting bacterial replication initiation sequences, we were able to successfully control replication initiation in Bacillus subtilis. This precise approach makes it possible to study non-replicating phenotypes, contributing to a better understanding of bacterial adaptive strategies
- …