598 research outputs found

    On malfunctioning software

    Get PDF
    Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, or dysfunction, occurs when an artefact token either does not (sometimes) or cannot (ever) do what it is supposed to. A positive malfunction, or misfunction, occurs when an artefact token may do what is supposed to but, at least occasionally, it also yields some unintended and undesirable effects. We argue that software, understood as type, may misfunction in some limited sense, but cannot dysfunction. Accordingly, one should distinguish software from other technical artefacts, in view of their design that makes dysfunction impossible for the former, while possible for the latter

    Multiparameter quantum critical metrology

    Get PDF
    Single parameter estimation is known to benefit from extreme sensitivity to parameter changes in quantum critical systems. However, the simultaneous estimation of multiple parameters is generally limited due to the incompatibility arising from the quantum nature of the underlying system. A key question is whether quantum criticality may also play a positive role in reducing the incompatibility in the simultaneous estimation of multiple parameters. We argue that this is generally the case and verify this prediction in paradigmatic quantum many-body systems close to first and second order phase transitions. The antiferromagnetic and ferromagnetic 1-D Ising chain with both transverse and longitudinal fields are analysed across different regimes and close to criticality

    On the Physical Vapour Deposition (PVD): evolution of magnetron sputtering processes for industrial applications

    Get PDF
    Advanced coatings play an important role in a wide range of industrial applications. These coatings are commonly used in machining tools due to their high hardness and wear resistance, but also can be applied in jewellery and decorative purposes. Deposition techniques have seen a strong evolution as result of the directly related devices, control evolution and software. Several variants have been developed around the main techniques: arc evaporation and sputtering. The coatings produced present significant differences in their characteristics, namely in terms of structure, mechanical properties and surface morphology. Depending on the substrate material and application, the deposition process needs to be properly selected, providing the particular characteristics requested. This paper intends to do a critical review of the evolution of the advanced coatings deposition process, mainly focused on the Physical Vapour Deposition (PVD) process, particularly in the Magnetron Sputtering technique, which is able to produce smooth surfaces, using lower temperatures, presenting excellent mechanical and tribological properties and having very good adhesion to the main materials used as substrate.Fundação para a Ciência e a Tecnologia | Ref. UID/EMS/0615/2016LAETA/CETRIB/INEGI Research Center-FLAD – Fundação Luso-Americana para o Desenvolvimento | Ref. 116/201

    A critical review on the numerical simulation related to Physical Vapour Deposition

    Get PDF
    Physical Vapour Deposition (PVD) is a process usually used for the production of advanced coatings regarding its application in several industrial and current products, such as optical lens, moulds and dies, decorative parts or tools. This process has several variants due to its strong evolution along the last decades. The process is commonly assisted by plasma, creating a particular low pressure and medium temperature atmosphere, which is responsible for the transition of atomic particles between the target and the parts to be coated into a vacuum reactor. Several parameters are directly affecting the deposition, namely the substrate temperature, pressure inside the reactor, assisting gases used, type of current, power supply, bias, substrate and target materials, samples holder and corresponding rotation, deposition time, among others. Many mathematical models have been developed in order to allow the generation of numerical simulation applications, trying to combine parameters and expect the corresponding results. Numerical simulation applications were created around the mathematical models previously developed, which can play an important role in the prediction of the coating properties and structure. This paper intends to describe the numerical simulation evolution in the last years, namely the use of Finite Elements Method (FEM) and Computational Fluid Dynamics (CFD).LAETA/CETRIB/INEGI Research Center- FLAD – Fundação Luso-Americana para o Desenvolvimento | Ref. 116/2018Fundação para a Ciência e a Tecnologia | Ref. UID/EMS/0615/201

    Efficacy of a Manualized and Workbook-Driven Individual Treatment for Social Anxiety Disorder

    Get PDF
    Social anxiety disorder is a prevalent and impairing disorder for which viable cognitive-behavioral therapies exist. However, these treatments have not been easily packaged for dissemination and may be underutilized as a result. The current study reports on the findings of a randomized controlled trial of a manualized and workbook-driven individual cognitive-behavioral treatment for social anxiety disorder (Hope, Heimberg, Juster, & Turk, 2000; Hope, Heimberg, & Turk, 2006). This treatment package was derived from an empirically supported group treatment for social anxiety disorder and intended for broad dissemination, but it has not previously been subjected to empirical examination on its own. As a first step in that examination, 38 clients seeking treatment for social anxiety disorder at either the Adult Anxiety Clinic of Temple University or the Anxiety Disorders Clinic of the University of Nebraska–Lincoln were randomly assigned to receive either immediate treatment with this cognitive-behavioral treatment package or treatment delayed for 20 weeks. Evaluation at the posttreatment/postdelay period revealed substantially greater improvements among immediate treatment clients on interviewer-rated and self-report measures of social anxiety and impairment. Three-month follow-up assessment revealed maintenance of gains. Clinical implications and directions for future research are discussed

    Europe’s Farm to Fork Strategy and Its Commitment to Biotechnology and Organic Farming: Conflicting or Complementary Goals?

    Get PDF
    The European Commission's Farm to Fork (F2F) strategy, under the European Green Deal, acknowledges that innovative techniques, including biotechnology, may play a role in increasing sustainability. At the same time, organic farming will be promoted, and at least 25% of the EU's agricultural land shall be under organic farming by 2030. How can both biotechnology and organic farming be developed and promoted simultaneously to contribute to achieving the Sustainable Development Goals (SDGs)? We illustrate that achieving the SDGs benefits from the inclusion of recent innovations in biotechnology in organic farming. This requires a change in the law. Otherwise, the planned increase of organic production in the F2F strategy may result in less sustainable, not more sustainable, food systems

    Caffeine, a Risk Factor for Osteoarthritis and Longitudinal Bone Growth Inhibition

    Get PDF
    Osteoarthritis (OA), the most common chronic rheumatic disease, is mainly characterized by a progressive degradation of the hyaline articular cartilage, which is essential for correct joint function, lubrication, and resistance. Articular cartilage disturbances lead to joint failure, pain, and disability. Hyaline cartilage is also present in the growth plate and plays a key role in longitudinal bone growth. Alterations of this cartilage by diverse pathologies have been related to longitudinal bone growth inhibition (LBGI), which leads to growth retardation. Diet can play a crucial role in processes involved in the OA and LBGI's onset and evolution. Specifically, there is ample evidence pointing to the negative impacts of caffeine consumption on hyaline cartilage. However, its effects on these tissues have not been reviewed. Accordingly, in this review, we summarize all current knowledge in the PubMed database about caffeine catabolic effects on articular and growth plate cartilage. Specifically, we focus on the correlation between OA and LBGI with caffeine prenatal or direct exposure. Overall, there is ample evidence indicating that caffeine intake negatively affects the physiology of both articular and growth plate cartilage, increasing consumers predisposition to suffer OA and LBGI. As a result, caffeine consumption should be avoided for these pathologies

    Algorithmic iteration for computational intelligence

    Get PDF
    Machine awareness is a disputed research topic, in some circles considered a crucial step in realising Artificial General Intelligence. Understanding what that is, under which conditions such feature could arise and how it can be controlled is still a matter of speculation. A more concrete object of theoretical analysis is algorithmic iteration for computational intelligence, intended as the theoretical and practical ability of algorithms to design other algorithms for actions aimed at solving well-specified tasks. We know this ability is already shown by current AIs, and understanding its limits is an essential step in qualifying claims about machine awareness and Super-AI. We propose a formal translation of algorithmic iteration in a fragment of modal logic, formulate principles of transparency and faithfulness across human and machine intelligence, and consider the relevance to theoretical research on (Super)-AI as well as the practical import of our results
    • …
    corecore