7 research outputs found

    Algorithms for visualization of graph-based structures

    Get PDF
    Buildings today are built to maintain a healthy indoor environment and an efficient energy usage which is probably why damages caused by dampness has increased since the 1960ā€™s. A study between year 2008 and 2010 showed that 26 percent of the 110 000 examined houses had damages and flaws caused by dampness that could prove to be harmful later on. This means that one out of four bathrooms risk the chance to develop damages by dampness. Approximately 2 percent of the houses had already developed water damages. It is here where the problems appear. A house or a building that is damaged by water of dampness need time to dry out before any renovation can take place. This means that damaged parts must be removed and allowed to dry out, this takes a long time to do and the costs are high and at the same time it can cause inconvenience to the residents. Here is where the Air Gap Method enters the picture. The meaning with the method is to drain and dry out the moisture without the need to perform a larger renovation. The Air Gap Method is a so called "forgiving"-system that is if water damages occur the consequences will be small. The Air Gap method means that an air gap is created in the walls, ceiling and the floor where a heating cable in the gap heats up the air and creates an air movement. The point is to create a stack effect in the gap that with the help of the air movement transports the damp air through an opening by the ceiling. The aim of this thesis is to examine if itā€™s necessary with the heating cable in the air gap and if there is a specific drying out pattern of the water damaged bathroom floor. The possibility of mould growth will also be examined. The study showed that the damped floor did dry out even without a heating cable, but as one of the studies showed signs of mould growth it is shown that the risk for mould growth is higher without a heating cable. There was a seven days difference in the drying out time between the studies with and without the heating cable; this difference can be decisive for mould growth which is why the heating cable is recommended. The Air Gap method is quite easy to apply in houses with light frame constructions simply by using a smaller dimension on the studs to create the air gap in the floor and walls. The method can also be applied in apartment buildings with a concrete frame by using the room-in- room principal. When renovating existing bathrooms itā€™s easier to use prefabricated elements to create the air gap in the floor and walls. ~

    Residual Shuffle-Exchange Networks for Fast Processing of Long Sequences

    Full text link
    Attention is a commonly used mechanism in sequence processing, but it is of O(n^2) complexity which prevents its application to long sequences. The recently introduced neural Shuffle-Exchange network offers a computation-efficient alternative, enabling the modelling of long-range dependencies in O(n log n) time. The model, however, is quite complex, involving a sophisticated gating mechanism derived from the Gated Recurrent Unit. In this paper, we present a simple and lightweight variant of the Shuffle-Exchange network, which is based on a residual network employing GELU and Layer Normalization. The proposed architecture not only scales to longer sequences but also converges faster and provides better accuracy. It surpasses the Shuffle-Exchange network on the LAMBADA language modelling task and achieves state-of-the-art performance on the MusicNet dataset for music transcription while being efficient in the number of parameters. We show how to combine the improved Shuffle-Exchange network with convolutional layers, establishing it as a useful building block in long sequence processing applications.Comment: 35th AAAI Conference on Artificial Intelligence (AAAI-21
    corecore