27 research outputs found

    Gewinnung haploider Stammzellkulturen der Maus für genetische Screens

    Get PDF
    Haploid mouse embryonic stem cells are a handy tool to investigate loss of function mutations. Furthermore, these cells can contribute to chimeric embryos and can be used to introduce genetic modifications into mouse germ lines. Nevertheless, haploid cell cultures have to be maintained by flow sorting on a regular basis due to spontaneous diploidization. Here we present physical differences between haploid and diploid cells, which can be used in applied cell sorting of haploid cell cultures

    A fast and efficient size separation method for haploid embryonic stem cells

    No full text
    Hemizygous mutations introduced in haploid genomes can directly expose a phenotype, thus facilitating gene function analysis and forward genetic screening. Recently, mammalian haploid cells could be derived from mouse, rat, monkey, and human embryos and have been applied to screens of cellular mechanisms including cell signaling, pathogen host factors, and developmental pathways. Notably, haploid cell cultures have an intrinsic tendency for diploidization and, thus, require periodic cell sorting. Here, we report a method for rapid purification of haploid mouse embryonic stem cells from mixed cell populations with high viability and yield. Our method uses membranes with micrometer pores for force-free separation and facilitates enrichment of haploid cells without flow cytometry. The separation method simplifies maintaining haploid cell cultures and has further applications in establishing haploid cell lines from embryos and isolating cell cycle phases of mammalian cells

    Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    No full text
    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring.ISSN:2041-172

    Data from: Flow cytometry combined with viSNE for analysis of microbial biofilms and detection of microplastics

    No full text
    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring

    Gewinnung haploider Stammzellkulturen der Maus für genetische Screens

    No full text
    Haploid mouse embryonic stem cells are a handy tool to investigate loss of function mutations. Furthermore, these cells can contribute to chimeric embryos and can be used to introduce genetic modifications into mouse germ lines. Nevertheless, haploid cell cultures have to be maintained by flow sorting on a regular basis due to spontaneous diploidization. Here we present physical differences between haploid and diploid cells, which can be used in applied cell sorting of haploid cell cultures

    Spatio-Temporal Patterns of Major Bacterial Groups in Alpine Waters

    No full text
    Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.ISSN:1932-620

    Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains

    No full text
    Microbial community assembly and microbial functions are affected by a number of different but coupled drivers such as local habitat characteristics, dispersal rates, and species interactions. In groundwater systems, hydrological flow can introduce spatial structure and directional dependencies among these drivers. We examined the importance of hydrology in structuring bacterial communities and their function within two alpine floodplains during different hydrological states. Piezometers were installed in stream sediments and surrounding riparian zones to assess hydrological flows and also were used as incubation chambers to examine bacterial community structures and enzymatic functions along hydrological flow paths. Spatial eigenvector models in conjunction with models based on physico-chemical groundwater characteristics were used to evaluate the importance of hydrologically-driven processes influencing bacterial assemblages and their enzymatic activities. Our results suggest a strong influence (up to 40% explained variation) of hydrological connectivity on enzymatic activities. The effect of hydrology on bacterial community structure was considerably less strong, suggesting that assemblages demonstrate large functional plasticity/redundancy. Effect size varied between hydrological periods but flow-related mechanisms always had the most power in explaining both bacterial structure and functioning. Changes in hydrology should be considered in models predicting ecosystem functioning and integrated into ecosystem management strategies for floodplains

    Polyploidy of semi-cloned embryos generated from parthenogenetic haploid embryonic stem cells

    No full text
    In mammals, the fusion of two gametes, an oocyte and a spermatozoon, during fertilization forms a totipotent zygote. There has been no reported case of adult mammal development by natural parthenogenesis, in which embryos develop from unfertilized oocytes. The genome and epigenetic information of haploid gametes are crucial for mammalian development. Haploid embryonic stem cells (haESCs) can be established from uniparental blastocysts and possess only one set of chromosomes. Previous studies have shown that sperm or oocyte genome can be replaced by haESCs with or without manipulation of genomic imprinting for generation of mice. Recently, these remarkable semi-cloning methods have been applied for screening of key factors of mouse embryonic development. While haESCs have been applied as substitutes of gametic genomes, the fundamental mechanism how haESCs contribute to the genome of totipotent embryos is unclear. Here, we show the generation of fertile semi-cloned mice by injection of parthenogenetic haESCs (phaESCs) into oocytes after deletion of two differentially methylated regions (DMRs), the IG-DMR and H19-DMR. For characterizing the genome of semi-cloned embryos further, we establish ESC lines from semi-cloned blastocysts. We report that polyploid karyotypes are observed in semi-cloned ESCs (scESCs). Our results confirm that mitotically arrested phaESCs yield semi-cloned embryos and mice when the IG-DMR and H19-DMR are deleted. In addition, we highlight the occurrence of polyploidy that needs to be considered for further improving the development of semi-cloned embryos derived by haESC injection.ISSN:1932-620

    Polyploidy of semi-cloned embryos generated from parthenogenetic haploid embryonic stem cells.

    No full text
    In mammals, the fusion of two gametes, an oocyte and a spermatozoon, during fertilization forms a totipotent zygote. There has been no reported case of adult mammal development by natural parthenogenesis, in which embryos develop from unfertilized oocytes. The genome and epigenetic information of haploid gametes are crucial for mammalian development. Haploid embryonic stem cells (haESCs) can be established from uniparental blastocysts and possess only one set of chromosomes. Previous studies have shown that sperm or oocyte genome can be replaced by haESCs with or without manipulation of genomic imprinting for generation of mice. Recently, these remarkable semi-cloning methods have been applied for screening of key factors of mouse embryonic development. While haESCs have been applied as substitutes of gametic genomes, the fundamental mechanism how haESCs contribute to the genome of totipotent embryos is unclear. Here, we show the generation of fertile semi-cloned mice by injection of parthenogenetic haESCs (phaESCs) into oocytes after deletion of two differentially methylated regions (DMRs), the IG-DMR and H19-DMR. For characterizing the genome of semi-cloned embryos further, we establish ESC lines from semi-cloned blastocysts. We report that polyploid karyotypes are observed in semi-cloned ESCs (scESCs). Our results confirm that mitotically arrested phaESCs yield semi-cloned embryos and mice when the IG-DMR and H19-DMR are deleted. In addition, we highlight the occurrence of polyploidy that needs to be considered for further improving the development of semi-cloned embryos derived by haESC injection
    corecore