240 research outputs found

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Imaging of ependymomas: MRI and CT

    Get PDF
    The imaging features of intracranial and spinal ependymoma are reviewed with an emphasis on conventional magnetic resonance imaging (MRI), perfusion MRI and proton magnetic resonance spectroscopy, and computed tomography. Imaging manifestations of leptomeningeal dissemination of disease are described. Finally, salient imaging features obtained in the postoperative period to evaluate completeness of surgical resection, and thereafter for long-term surveillance for disease recurrence, are reviewed

    Nonlinear wave interaction in coastal and open seas -- deterministic and stochastic theory

    Get PDF
    We review the theory of wave interaction in finite and infinite depth. Both of these strands of water-wave research begin with the deterministic governing equations for water waves, from which simplified equations can be derived to model situations of interest, such as the mild slope and modified mild slope equations, the Zakharov equation, or the nonlinear Schr\"odinger equation. These deterministic equations yield accompanying stochastic equations for averaged quantities of the sea-state, like the spectrum or bispectrum. We discuss several of these in depth, touching on recent results about the stability of open ocean spectra to inhomogeneous disturbances, as well as new stochastic equations for the nearshore

    Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species

    Get PDF
    The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = ∼0.6) with the intrinsic metabolic capacities of a species—higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets

    Central nervous system relapse in patients with breast cancer is associated with advanced stages, with the presence of circulating occult tumor cells and with the HER2/neu status

    Get PDF
    INTRODUCTION: To evaluate the incidence of central nervous system (CNS) involvement in patients with breast cancer treated with a taxane-based chemotherapy regimen and to determine predictive factors for CNS relapse. METHODS: The medical files of patients with early breast cancer (n = 253) or advanced stage breast cancer (n = 239) as well of those with other solid tumors (n = 336) treated with or without a taxane-based chemotherapy regimen during a 42-month period were reviewed. HER2/neu overexpression was identified by immunohistochemistry, whereas cytokeratin 19 (CK-19) mRNA-positive circulating tumor cells (CTCs) in the peripheral blood were identified by real-time PCR. RESULTS: The incidence of CNS relapse was similar in patients suffering from breast cancer or other solid tumors (10.4% and 11.4%, respectively; P = 0.517). The incidence of CNS relapse was significantly higher in breast cancer patients with advanced disease (P = 0.041), visceral disease and bone disease (P = 0.036), in those who were treated with a taxane-containing regimen (P = 0.024), in those with HER2/neu-overexpressing tumors (P = 0.022) and, finally, in those with detectable CK-19 mRNA-positive CTCs (P = 0.008). Multivariate analysis revealed that the stage of disease (odds ratio, 0.23; 95% confidence interval, 0.007–0.23; P = 0.0001), the HER2/neu status (odds ratio, 29.4; 95% confidence interval, 7.51–101.21; P = 0.0001) and the presence of CK-19 mRNA-positive CTCs (odds ratio, 8.31; 95% confidence interval, 3.97–12.84; P = 0.001) were independent predictive factors for CNS relapse. CONCLUSION: CNS relapses are common among breast cancer patients treated with a taxane-based chemotherapy regimen, patients with HER2/neu-positive tumor and patients with CK-19 mRNA-positive CTCs

    Second-line treatment for primary central nervous system lymphoma

    Get PDF
    Failure after first-line treatment was reported in 35–60% of immunocompetent patients with primary central nervous system lymphoma (PCNSL). There are currently no reports focusing on salvage therapy. This review analyses prognostic factors and the efficacy of salvage therapy by focusing on data from papers reporting results of first-line treatment in 355 cases. The study group consisted of 173 patients presenting treatment failure. The interval between failure and death (TTD) was compared for age at relapse (≤60 vs >60 years), type of failure (relapse vs progression), time to relapse (≤12 vs >12 months) and salvage treatment (yes vs no). Median TTD was similar in younger and older patients (P = 0.09). Relapsed patients had a longer TTD than patients with progressive disease (P = 0.002). Early relapse led to a shorter TTD than late relapse (P = 0.005). Median TTD was 14 months for patients who underwent salvage therapy and 2 months for untreated cases (P < 0.00001). A multivariate analysis showed an independent prognostic role for salvage therapy and time to relapse. Age and type of failure had no predictive value. Salvage therapy significantly improves outcome and, possibly, quality of life. As many different treatments were used conclusions cannot be made regarding an optimal treatment schedule. © 1999 Cancer Research Campaig
    corecore