Henry Ford Health Henry Ford Health Scholarly Commons

Gastroenterology Meeting Abstracts

Gastroenterology

7-1-2021

Efficacy, safety, and tolerability of seladelpar in patients with compensated liver cirrhosis due to primary biliary cholangitis (PBC): a pooled analysis of phase 2 and phase 3 studies

Stuart C. Gordon Henry Ford Health, sgordon3@hfhs.org

Palak Trivedi

Christopher Bowlus

Galambos Michael

Aparna Goel

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/ gastroenterology_mtgabstracts

Recommended Citation

Gordon SC, Trivedi P, Bowlus C, Michael G, Goel A, Gulamhusein A, Levy C, Neff G, Stanca C, Thorburn D, Bacon B, Borg B, Doerffel Y, Forman L, Freilich B, Gheorghe L, Gonzalez MS, Harrison S, Huang J, Jeong S-H, Kim SU, Lake J, Odin J, Tak WY, Tobias H, Vierling JM, Yang K, Steinberg A, Choi Y-J, McWherter C, and Mayo MJ. Efficacy, safety, and tolerability of seladelpar in patients with compensated liver cirrhosis due to primary biliary cholangitis (PBC): a pooled analysis of phase 2 and phase 3 studies. J Hepatol 2021; 75:S686-S687.

This Conference Proceeding is brought to you for free and open access by the Gastroenterology at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Gastroenterology Meeting Abstracts by an authorized administrator of Henry Ford Health Scholarly Commons.

Authors

Stuart C. Gordon, Palak Trivedi, Christopher Bowlus, Galambos Michael, Aparna Goel, Aliya Gulamhusein, Cynthia Levy, Guy Neff, Carmen Stanca, Douglas Thorburn, Bruce Bacon, Brian Borg, Yvonne Doerffel, Lisa Forman, Bradley Freilich, Liana Gheorghe, María S. González, Stephen Harrison, Jonathan Huang, Sook-Hyang Jeong, Seung U. Kim, John Lake, Joseph Odin, Won Y. Tak, Hillel Tobias, John M. Vierling, Ke Yang, Alexandra Steinberg, Yun-Jung Choi, Charles McWherter, and Marlyn J. Mayo

POSTER PRESENTATIONS

PO-1758

Circulating Fn14 is associated with pathogenic TH17 polarization in children with sclerosing cholangitis and inflammatory bowel disease

Simon Lam¹, Immaculeta Osuji², Annika Yang vom Hofe², Ruchi Singh², Cyd Castro Rojas², Astha Malik², Jonathan Dillman³, Divya Sharma⁴, Rebekah Karns², Rana Herro⁵, Alexander Miethke². ¹Alberta Children's Hospital, Pediatric Gastroenterology, Hepatology and Nutrition, Calgary, Canada; ²Cincinnati Children's Hospital Medical Center, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati, United States; ³Cincinnati Children's Hospital Medical Center, Radiology, Cincinnati, United States; ⁴University of Cincinnati College of Medicine, Pathology, Cincinnati, United States; ⁵Cincinnati Children's Hospital Medical Center, Immunobiology, Cincinnati, United States Email: simon.lam@albertahealthservices.ca

Background and aims: Sclerosing cholangitis (SC) including primary sclerosing cholangitis (PSC) and autoimmune sclerosing cholangitis (ASC) are highly associated with inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC), and SC-IBD may represent a unique IBD phenotype. We previously reported Th17.1 polarization in liver tissue, using both liver RNAs-seq and multi-parameter immunofluorescence, to segregate with SC-IBD. In the present study, we aim to discover biomarkers that selectively segregate with SC-IBD.

Method: Circulating plasma proteins were assayed by Slow Off-rate Modified Aptamer (SOMAscan) technology on children in 2 separate cohorts of SC-IBD and healthy controls (HC) (A: SC-IBD = 17, mean age = 15.4 years, male = 10, UC = 8; HC = 13, mean age = 17.8 years, male = 7; B: SC-IBD = 11, mean age = 16.1 years, male = 9, UC = 8; HC = 8, mean age = 14.1 years, male = 3). Significantly differentially expressed proteins determined by Wilcoxon Rank Sum test and corrected using a false discovery rate of <5% in cohort A were validated in cohort B using logistic regression. Spearman rank order correlation was used to correlate significant circulating plasma proteins and liver biochemistries.

Results: Of 1305 circulating plasma proteins assayed, 215 proteins were nominally significant between SC-IBD and HC in cohort A. Pathways related to TH1 and TH2 cell differentiation, TNF, and IL-17 signaling pathways were upregulated in children with SC-IBD. Ten of these 215 proteins were validated in cohort B with increased concentrations of CXCL8, TIMP1, FGF23, FCGR3B, PIGR, SCARB2, TNFRSF1A and Fn14, while ACY1 and CTSD were the only proteins with decreased concentrations in SC-IBD compared to HC. SC-IBD had a 3.7-fold increase in Fn14 compared to HC, highest among all validated proteins (Table 1). Concentrations of circulating Fn14 correlated with AST (rs = 0.40, p = 0.03) and GGT (rs = 0.37, p = 0.04).

Table 1: Mean concentrations[†] of significantly differentially expressed circulating plasma proteins in children with SC-IBD compared to HC assayed by SOMAscan

Protein	HC	SC-IBD	Fold Change (SC-IBD/HC)	Corrected p value
Fn14	377	1398	3.71	<0.001
SCARB2	441	872	1.98	<0.001
PIGR	12040	18706	1.55	<0.001
TNFRSF1A	1423	1962	1.38	<0.001
CXCL8	2407	3229	1.34	<0.001
TIMP1	482	500	1.04	<0.001
FCGR3B	2225	2265	1.02	<0.001
ACY1	16734	16609	0.99	<0.001
CTSD	1462	1421	0.97	<0.001

 $^{\rm t}$ Concentrations of proteins expressed as relative fluorescent units (RFU) calibrated to a standard curve

Conclusion: Large scale plasma proteomic analysis discovered circulating Fn14 to segregate with pediatric SC-IBD and to correlate with biomarkers of SC liver disease. Fn14 was previously shown to promote TH17 polarization in autoimmune conditions like rheumatoid arthritis. The role of Fn14 in driving hepatic TH17.1 requires further investigations.

PO-1809

Efficacy, safety, and tolerability of seladelpar in patients with compensated liver cirrhosis due to primary biliary cholangitis (PBC): a pooled analysis of phase 2 and phase 3 studies

(PBC): a pooled analysis of phase 2 and phase 3 studies Stuart C. Gordon¹, Palak Trivedi², Christopher Bowlus³, Galambos Michael⁴, Aparna Goel⁵, Aliya Gulamhusein⁶, Cynthia Levy⁷, Guy Neff⁸, Carmen Stanca⁹, Douglas Thorburn¹⁰, Bruce Bacon¹¹, Brian Borg¹², Yvonne Doerffel¹³, Lisa Forman¹⁴, Bradley Freilich¹⁵, Liana Gheorghe¹⁶, María Saraí González¹⁷, Stephen Harrison¹⁸, Jonathan Huang¹⁹, Sook-Hyang Jeong²⁰, Seeng Up Kim²¹, John Lake²², Joseph Odin²³, Won Young Tak²⁴, Hillel Tobias²⁵, John M. Vierling²⁶, Ke Yang²⁷, Alexandra (Sasha) Steinberg²⁷, Yun-Jung Choi²⁷, Charles McWherter²⁷, Marlyn J. Mayo²⁸. ¹Henry Ford Health System, Detroit, United States; ²University Hospital Birmingham, Birmingham, United Kingdom; ³University of California Davis Medical Center, Sacramento, United States; ⁴Digestive Healthcare of Georgia, Atlanta, United States; ⁵Stanford Hospital, Stanford, United States; ⁶Toronto General Hospital, Toronto, Canada; ⁷University of Miami, Miami, United States; ⁸Covenant Research, Sarasota, United States; ⁹NYU Langone Health, New York, United States; ¹⁰Royal Free Hospital, London, United Kingdom; ¹¹Saint Louis University School of Medicine, St. Louis, United States; ¹² Jackson Liver and GI Specialists, Jackson, United States; ¹³Charite, Berlin, Germany; ¹⁴University of Colorado, Aurora, United States; ¹⁵Kansas City Research Institute, Kansas City, United States; ¹⁶Fundeni Clinical Institute, Bucharest, Romania; ¹⁷Consultorio de la Doctora Maria Sarai Gonzalez Huezo, Metepec, Mexico; ¹⁸Pinnacle Clinical Research, San Antonio, United States; ¹⁹University of Rochester, Rochester, United States; ²⁰Seoul National University Bundang Hospital, Bundang-Gu, Seongnam-Si, Korea, Rep. of South; ²¹Severance Hospital Yonsei University Health System, Seodaemun-Gu, Korea, Rep. of South; ²²University of Minnesota, Minneapolis, United States; ²³Mount Sinai Hospital, New York, United States; ²⁴Kyungpook National University Hospital, Daegu, Korea, Rep. of South; ²⁵Concorde Medical Group, New York, United States; ²⁶Baylor College of Medicine, Houston, United States; ²⁷CymaBay Therapeutics, Newark, United States; ²⁸University of Texas Southwestern, Dallas, United States Email: ychoi@cymabay.com

Background and aims: Patients with PBC and compensated cirrhosis can progress to decompensation with its associated complications, liver transplantation or death. PBC patients with an incomplete response or intolerance to UDCA have an unmet need to slow disease progression. Seladelpar, a selective PPAR delta agonist, has shown potent anti-cholestatic and anti-pruritic activity in PBC studies. We now report a pooled analysis from two studies assessing the efficacy, safety, and tolerability of seladelpar in PBC patients with compensated cirrhosis.

Method: Eligible PBC patients with an inadequate response or intolerance to UDCA (ALP ≥1.67 × ULN) were enrolled into an open-label phase 2 study (EudraCT 2016-002996-91) or a placebo (Pbo)-controlled phase 3 study (EudraCT 2018-001171-20). Cirrhosis was diagnosed using liver biopsy, imaging tests, or liver elastography. Patients received oral Pbo, seladelpar 5 mg or 10 mg once daily + UDCA if tolerated. Efficacy analyses at 3 months included composite response (ALp <1.67 × ULN, ALP decrease of ≥15% and total bilirubin [TB] ≤ULN), ALP % change, ALP ≤ULN, and changes in liver function. Safety was assessed for 3 months.

Results: Of 384 enrolled patients, 53 had compensated cirrhosis (Child-Pugh A: Pbo [n=7], 5 mg [n=22], and 10 mg [n=24]). Baseline characteristics included: 92% female, mean age 58 yrs, 94%

on UDCA, ALP 287 U/L, TB 0.92 mg/dL, ALT 50 U/L, AST 49 U/L, GGT 228 U/L, albumin 3.96 g/dL, and platelets 197×10^3 /µL. After 3 months, 39 patients were treated. The composite end point was met in 50% (9/18) of 5 mg and 63% (10/16) of 10 mg groups compared to none in Pbo (0/5). Reductions in ALP in the 5 mg (-31%, -82 U/L) and 10 mg groups (-41%, -114 U/L) were greater than Pbo (-2.6%, -8.7 U/L). ALP was normalized in 3 patients in each seladelpar group (17–19%) but none in Pbo. Changes in ALT were -15%, -6%, and -32% in Pbo, 5 and 10 mg groups, respectively. Total bilirubin, platelets, albumin, and INR remained stable. One patient in 10 mg discontinued due to AE (pruritus). Three patients had an SAE: 2 on 5 mg (febrile neutropenia, procedural pain) and 1 on 10 mg (angina pectoris), all unrelated to study drug. Efficacy, tolerability, and safety in patients with compensated cirrhosis were comparable to that of non-cirrhotic patients.

Conclusion: Seladelpar appeared safe and was well tolerated and may provide an effective treatment option for patients with compensated liver cirrhosis due to PBC.

PO-1811

Odevixibat effects on cholestasis-related parameters: Analysis of pooled data from the PEDFIC 1 and PEDFIC 2 studies in children with progressive familial intrahepatic cholestasis

Richard Thompson¹, Reha Artan², Ulrich Baumann³, Piotr Czubkowski⁴, Buket Dalgıç⁵, Ozlem Durmaz⁶, Emmanuel Gonzales⁷, Tassos Grammatikopoulos^{1,8}, Girish Gupte⁹ Patrick Horn¹⁰, Alain Lachaux¹¹, Patrick McKiernan¹², Hasan Ozen¹³, Sanjay Rajwal¹⁴, Bertrand Roquelaure¹⁵, Ekkehard Sturm¹⁶, Henkjan Verkade¹⁷, Qifeng Yu¹⁰, Lise Kjems¹⁰. ¹Institute of Liver Studies, King's College London; ²Akdeniz University; ³Hannover Medical School; ⁴The Children's Memorial Health Institute; ⁵Gazi University Faculty of Medicine; ⁶Istanbul University; ⁷Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Hépatinov, Inserm U 1193; ⁸King's College Hospital NHS Trust, Pediatric Liver, GI and Nutrition Centre; ⁹Birmingham Women's and Children's NHS Foundation Trust; ¹⁰Albireo Pharma, Inc.; ¹¹Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant; ¹²UPMC Children's Hospital of Pittsburgh; ¹³Hacettepe University Faculty of Medicine; ¹⁴Leeds Teaching Hospitals NHS Trust, Leeds Children's Hospital; ¹⁵CHU, Hospital de la Timone; ¹⁶University Children's Hospital Tübingen; ¹⁷University of Groningen, Beatrix Children's Hospital/University Medical Center Groningen Email: lise.kjems@albireopharma.com

Background and aims: Odevixibat, an ileal bile acid transporter inhibitor, is in development to treat cholestatic liver diseases. In the phase 3 PEDFIC 1 (P1) and PEDFIC 2 (P2) studies, odevixibat treatment reduced serum bile acids (sBAs) and improved pruritus in patients with progressive familial intrahepatic cholestasis (PFIC). Using pooled data from these studies, we analysed changes in parameters of cholestasis, pruritus, and hepatic laboratory markers and compared patients who responded to odevixibat treatment (Rs) with non-responders (NRs).

POSTER PRESENTATIONS

Method: P1 was a 24-week, randomized, placebo-controlled study in children with PFIC1 or PFIC2, and P2 is an ongoing, 72-week extension study in patients with any type of PFIC. In this pooled analysis, spanning 48 weeks, 77 patients have received odevixibat (PFIC1, n = 20; PFIC2, n = 51; PFIC3, n = 5; MYO5B deficiency, n = 1; overall median exposure: 37 weeks). Two responder definitions were examined: 1) sBA response (ie, sBAs <65 or <102 μ mol/L for PFIC1 and PFIC2, respectively) and 2) sBA response *or* pruritus response (ie, a \geq 1-point drop from baseline in PRUCISION score).

Results: Rates of sBA Rs and sBA or pruritus Rs were 31% and 57%, respectively, at weeks 0–24, 48% and 60% at weeks 25–36, and 59% and 65% at weeks 37–48. Among all odevixibat-treated patients, mean change from baseline (CFB) to week 48 in alanine amino-transferase (ALT) and total bilirubin was -82 U/L and -18 µmol/L, respectively. In general, Rs had greater mean CFB (ie, improvements) vs NRs in these hepatic laboratory parameters with long-term odevixibat treatment (Table) that started as early as week 4 and increased over time.

1	Га	b	1	e	
		~	•	~	1

Liver Enzyme	sBA Response			sBA or Pruritus Response					
Levels	Yes			No		Yes		No	
	n (% ^a)	Mean (SE)	m	Mean (SE)	n (% ^a)	Mean (SE)	m	Mean (SE)	
ALT, U/L									
Baseline	24	124	38	82	48	104	28	69	
	(39)	(33)		(12)	(63)	(18)		(11)	
CFB→wk 4	23	-28	36	21	43	-2	27	9(4)	
	(39)	(37)		(16)	(61)	(24)			
CFB→wk 24	19	-67	28	-10	31	-56	19	5 (8)	
	(40)	(42)		(11)	(62)	(27)			
CFB→wk 48	15	-112	9	-32	18	-108	6	-5	
	(63)	(57)		(22)	(75)	(48)		(15)	
Total bilirubin, μmol/L									
Baseline	24	27(7)	38	74	48	42 (6)	28	67	
	(39)	()		(12)	(63)	~ /		(16)	
CFB→wk 4	23	-8(4)	36	-10	43	-6(4)	27	-14	
	(39)			(9)	(61)			(11)	
CFB→wk 24	19	-23	28	-19	31	-19	19	_23́	
	(40)	(8)		(10)	(62)	(7)		(13)	
CFB→wk 48	15	-25	9	-6	18	-25	6	1 (20)	
	(63)	(11)		(14)	(75)	(9)			

^aResponder rate ($[n/(n + m)] \times 100$).

Conclusion: Patients with PFIC who responded to odevixibat treatment had sustained improvements in cholestasis-related parameters that were not observed to the same extent in treatment non-responders.

PO-1828

Genetic mutation and cystic fibrosis-associated liver disease at the time of diagnosis in children: A correlational study

<u>Alejandra Marisela Sabillon-Mendoza¹, Rubén Peña Velez¹,</u> Flora Zarate¹, Jaime Ramirez^{1, 1}Instituto Nacional de Pediatría, Gastroenterología y Nutrición, Ciudad de México, Mexico Email: alesabillon@yahoo.com

Background and aims: It is estimated that 10 to 15% of patients with cystic fibrosis have liver disease (CFLD), this negatively impacts the evolution of the disease, it has been reported that dysfunction of the transmembrane conductance regulator (CFTR) has a direct effect on the cholangiocyte function, finally the spectrum of complications ranges from cholestasis, progressive fibrosis, biliary obstruction to focal biliary cirrhosis. Around 2000 mutations in CFTR have been determined and classified according to their functional defect, however, none of them have been associated with CFLD, accepting that this is due to the interaction of environmental factors,