42 research outputs found

    Synthesis of polyacid nanogels: pH-responsive sub-100 nm particles for functionalisation and fluorescent hydrogel assembly

    Get PDF
    Nanogels are crosslinked polymer particles with a swollen size between 1 and 100 nm. They are of major interest for advanced surface coatings, drug delivery, diagnostics and biomaterials. Synthesising polyacid nanogels that show triggered swelling using a scalable approach is a key objective of polymer colloid chemistry. Inspired by the ability of polar surfaces to enhance nanoparticle stabilisation, we report the first examples of pH-responsive polyacid nanogels containing high -COOH contents prepared by a simple, scalable, aqueous method. To demonstrate their functionalisation potential, glycidyl methacrylate was reacted with the -COOH chemical handles and the nanogels were converted to macro-crosslinkers. The concentrated (functionalised) nanogel dispersions retained their pH-responsiveness, were shear-thinning and formed physical gels at pH 7.4. The nanogels were covalently interlinked via free-radical coupling at 37 °C to form transparent, ductile, hydrogels. Mixing of the functionalised nanogels with polymer dots enabled covalent assembly of fluorescent hydrogels

    Potential role of the posterior cruciate ligament synovio-entheseal complex in joint effusion in early osteoarthritis: a magnetic resonance imaging and histological evaluation of cadaveric tissue and data from the Osteoarthritis Initiative

    Get PDF
    Objective: This study explored posterior cruciate ligament (PCL) synovio-entheseal complex (SEC) microanatomy to determine whether it may participate in the early osteoarthritis (OA) disease process. Methods: SEC microanatomy and OA features were evaluated in 14 non-arthritic cadaveric knees (mean age = 69.9) using magnetic resonance imaging (MRI) and histology. MRI images of 49 subjects selected from the progression cohort of the Osteoarthritis Initiative (OAI) were evaluated by a musculoskeletal radiologist using an original semi-quantitative method for features associated with OA at the PCL tibial enthesis. Statistical analysis was performed using chi-square and Wilcoxon signed-rank tests to evaluate associations between SEC configuration and OA features. Results: The PCL formed a SEC-like structure encompassing bone- and ligament-lining intra-articular cartilages to which the posterior root of the medial meniscus contributed. Degenerative features at the PCL-SEC included: neovascularisation (44%), enthesis chondrocyte clustering (44%), collagen matrix fissuring at the enthesis (56%) and in the PCL itself (67%), tidemark duplication (44%), bone remodelling (44%) and microscopic inflammatory changes (33%). In the OAI cohort, SEC-related pathology included bone marrow lesions (BMLs) (69%) and osteophytosis (94%) at locations that corresponded to SEC-related cartilages. Posterior joint recess effusion (49%) was linked to MRI abnormalities at PCL-SEC cartilages (χ2 = 7.27, P = 0.007). Conclusions: The PCL has a prominent SEC configuration that is associated with microscopic OA changes in aged clinically non-diseased joints. MRI determined knee OA commonly exhibited pathological features at this site which was associated with adjacent joint effusion. Thus, the PCL-SEC could play a hitherto unappreciated role in the early OA disease process

    Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies

    No full text
    Degeneration of the intervertebral disc (IVD) is a major cause of low back pain affecting a large percentage of the population at some point in their lives. Consequently IVD degeneration and its associated low back pain has a huge socio-economic impact and places a burden on health services world-wide. Current treatments remove the symptoms without treating the underlying problem and can result in reoccurrence in the same or adjacent discs. Tissue engineering offers hope that new therapies can be developed which can regenerate the IVD. Combined with this, development of novel biomaterials and an increased understanding of mesenchymal stem cell and IVD cell biology mean that tissue engineering of the IVD may soon become a reality. However for any regenerative medicine approach to be successful there must first be an understanding of the biology of the tissue and the pathophysiology of the disease process. This review covers these key areas and gives an overview of the recent developments in the fields of biomaterials, cell biology and tissue engineering of the IVD

    Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster

    No full text
    Recent studies have suggested that the adipocyte-derived hormone, leptin, plays a role in the regulation of metabolism. Here, we tested this hypothesis in the seasonally breeding Siberian hamster, as this species exhibits profound seasonal changes in adiposity and circulating leptin concentrations driven by the annual photoperiodic cycle. Male hamsters were kept in either long (LD) or short (SD) photoperiods. Following exposure to short photoperiods for 8 weeks animals exhibited a significant weight-loss and a 16-fold reduction of serum leptin concentrations. At Week 9, animals in both photoperiods were infused with leptin or PBS via osmotic mini-pump for 14 days. Chronic leptin infusion mimicked LD-like concentrations in SD-housed animals and caused a further decline in body weight and adipose tissue. In LD-housed animals, leptin infusion resulted in a significant elevation of serum concentrations above natural LD-like levels, but had no discernable effect on body weight or overall adiposity. Both bending and compression characteristics and histomorphometric measurements of trabecular bone mass were unaltered by leptin treatment or photoperiod. Our data therefore show that despite a high natural amplitude cycle of leptin, this hormone has no apparent role in the regulation of bone metabolism, and therefore do not support recent propositions that this hormone is an important component in the metabolism of bone tissue
    corecore