1,101 research outputs found

    Decisions, Decisions: Noise and its Effects on Integral Monte Carlo Algorithms

    Full text link
    In the present paper we examine the effects of noise on Monte Carlo algorithms, a problem raised previously by Kennedy and Kuti (Phys. Rev. Lett. {\bf 54}, 2473 (1985)). We show that the effects of introducing unbiased noise into the acceptance/rejection phase of the conventional Metropolis approach are surprisingly modest, and, to a significant degree, largely controllable. We present model condensed phase numerical applications to support these conclusions.Comment: Chemical Physics Letters, 12 pages text, 5 figure

    Analysis of Mesoscopic Structured 2-Propanol/Water Mixtures Using Pressure Perturbation Calorimetry and Molecular Dynamic Simulation

    Get PDF
    In this paper we demonstrate the application of pressure perturbation calorimetry (PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/water mixtures provides two useful measurements: (i) the change in heat (ΔQ); and (ii) the [δC¯p/δp]T[δC¯p/δp]T value. The results demonstrate that the ΔQ values of the mixtures deviate from that expected for a random mixture, with a maximum at ~20–25 mol% 2-propanol. This coincides with the concentration at which molecular dynamics (MD) simulations show a maximum deviation from random distribution, and also the point at which alcohol–alcohol hydrogen bonds become dominant over alcohol–water hydrogen bonds. Furthermore, the [δC¯p/δp]T[δC¯p/δp]T value showed transitions at 2.5 mol% 2-propanol and at approximately 14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of [δC¯p/δp]T[δC¯p/δp]T are negative; this is indicative of the presence of isolated 2-propanol molecules surrounded by water molecules. Above 2.5 mol% 2-propanol [δC¯p/δp]T[δC¯p/δp]T rises, reaching a maximum at ~14 mol% corresponding to a point where mixed alcohol–water networks are thought to dominate. The values and trends identified by PPC show excellent agreement not only with those obtained from MD simulations but also with results in the literature derived using viscometry, THz spectroscopy, NMR and neutron diffraction

    The Construction of Double-Ended Classical Trajectories

    Full text link
    In the present paper we describe relaxation methods for constructing double-ended classical trajectories. We illustrate our approach with an application to a model anharmonic system, the Henon-Heiles problem. Trajectories for this model exhibit a number of interesting energy-time relationships that appear to be of general use in characterizing the dynamics.Comment: (12 pages, submitted to Chemical Physics Letters. Figures are too large for convenient e-mail access. they are available via anonymous ftp on willie.chem.brown.edu and reside in the directory pub/chem-ph/9407 as the compressed tar file 9407001.tar.Z. If you have difficulty retrieving the figures, please contact J. Doll ([email protected]) for assistance

    Finite gravitational action for higher derivative and stringy gravities

    Get PDF
    We generalize the local surface counterterm prescription suggested in Einstein gravity for higher derivative (HD) and Weyl gravities. Explicitly, the surface counterterm is found for three- and five-dimensional HD gravities. As a result, the gravitational action for asymptotically AdS spaces is finite and gravitational energy-momentum tensor is well-defined. The holographic trace anomaly for d2 and d4 boundary (gauge) QFT dual to above HD gravity is calculated from gravitational energy-momentum tensor. The calculation of AdS black hole mass in HD gravity is presented within above prescrition. The comparison with the standard prescription (using reference spacetime) is done.Comment: LaTeX file, 21 page

    Modified gravity without dark matter

    Full text link
    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological successes of MOND and then discuss the various covariant theories that have been proposed as a basis for the idea. I show why these proposals have led inevitably to a multi-field theory. I describe in some detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and discuss its successes and shortcomings. This lecture is primarily pedagogical and directed to those with some, but not a deep, background in General RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School, The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected, references update

    Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132^{132}Sn on 64^{64}Ni

    Full text link
    Evaporation residue cross sections have been measured with neutron-rich radioactive 132^{132}Sn beams on 64^{64}Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2×1042\times 10^{4} particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure

    Nonthermal atmospheric pressure plasma enhances mouse limb bud survival, growth, and elongation.

    Get PDF
    The enhanced differentiation of mesenchymal cells into chondrocytes or osteoblasts is of paramount importance in tissue engineering and regenerative therapies. A newly emerging body of evidence demonstrates that appendage regeneration is dependent on reactive oxygen species (ROS) production and signaling. Thus, we hypothesized that mesenchymal cell stimulation by nonthermal (NT)-plasma, which produces and induces ROS, would (1) promote skeletal cell differentiation and (2) limb autopod development. Stimulation with a single treatment of NT-plasma enhanced survival, growth, and elongation of mouse limb autopods in an in vitro organ culture system. Noticeable changes included enhanced development of digit length and definition of digit separation. These changes were coordinated with enhanced Wnt signaling in the distal apical epidermal ridge (AER) and presumptive joint regions. Autopod development continued to advance for approximately 144 h in culture, seemingly overcoming the negative culture environment usually observed in this in vitro system. Real-time quantitative polymerase chain reaction analysis confirmed the up-regulation of chondrogenic transcripts. Mechanistically, NT-plasma increased the number of ROS positive cells in the dorsal epithelium, mesenchyme, and the distal tip of each phalange behind the AER, determined using dihydrorhodamine. The importance of ROS production/signaling during development was further demonstrated by the stunting of digital outgrowth when anti-oxidants were applied. Results of this study show NT-plasma initiated and amplified ROS intracellular signaling to enhance development of the autopod. Parallels between development and regeneration suggest that the potential use of NT-plasma could extend to both tissue engineering and clinical applications to enhance fracture healing, trauma repair, and bone fusion

    A lattice model for the kinetics of rupture of fluid bilayer membranes

    Full text link
    We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion), the thickness of the hydrophobic part of the bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium ``phase diagram'' is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first order rupture line is found with increasing tension, and a continuous increase in proto-pore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated PC lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.Comment: 15 pages, 8 figure
    • …
    corecore