374 research outputs found

    Charge disproportionation and Jahn-Teller distortion in LiNiO2 and NaNiO2: A density functional theory study

    Get PDF
    Density functional theory calculations have been performed on three potential ground-state configurations of LiNiO2 and NaNiO2. These calculations show that, whereas NaNiO2 shows the expected cooperative Jahn-Teller distortion (and therefore a crystal structure with C2/m symmetry), LiNiO2 shows at least two possible crystal structures very close in energy (within 3 meV/f.u.): P21/c and P2/c. Moreover, one of them (P2/c) shows charge disproportionation of the (expected) Ni3+ cations into Ni2+ and Ni4+. We discuss the implications of this complex ground state for the interpretation of the available electron and neutron structure data, its electronic and complex magnetic behaviour

    Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys

    Get PDF
    This study examines the comparative phase stability of transition and late transition element based high entropy alloys in body-centred cubic (BCC) or face-centred cubic (FCC) forms using a combined classical molecular dynamics and statistical mechanics based approach. Multi-configurational sampling was carried out using a hybrid genetic algorithm-molecular dynamics (GA-MD) based method. The calculations demonstrate that comparative BCC or FCC phase stability is influenced by configurational entropy. The present study also provides a theoretical explanation of the recently reported occurrence of BCC phase in CoCrFeNi HEA, where the high temperature structure may be retained

    Electron spin mediated distortion in metallic systems

    Get PDF
    The deviation of positions of atoms from their ideal lattice sites in crystalline solid state systems causes distortion and it causes variation in structural [1] and functional properties [2]. Severe lattice distortion has been proposed to be one of the core-effect in high-entropy alloys. But the fundamental mechanism of distortion at atomic scale is missing for real three-dimensional metallic systems. The present investigation aims to develop mechanistic understanding of atomic scale distortion in metallic systems in terms of the magneto-volume effects. The correlation between charge-disproportion, spin fluctuations, magneto-volume effects and Fermi surface nesting has been highlighted

    Amino acid and oligopeptide effects on calcium carbonate solutions

    Get PDF
    Biological organisms display sophisticated control of nucleation and crystallization of minerals. In order to mimic living systems, deciphering the mechanisms by which organic molecules control the formation of mineral phases from solution is a key step. We have used computer simulations to investigate the effects of the amino acids arginine, aspartic acid, and glycine on species that form in solutions of calcium carbonate (CaCO3) at lower and higher levels of supersaturation. This provides net positive, negative, and neutral additives. In addition, we have prepared simulations containing hexapeptides of the amino acids to consider the effect of additive size on the solution species. We find that additives have limited impact on the formation of extended, liquid-like CaCO3 networks in supersaturated solutions. Additives control the amount of (bi)carbonate in solution, but more importantly, they are able to stabilize these networks on the time scales of the simulations. This is achieved by coordinating the networks and assembled additive clusters in solutions. The association leads to subtle changes in the coordination of CaCO3 and reduced mobility of the cations. We find that the number of solute association sites and the size and topology of the additives are more important than their net charge. Our results help to understand why polymer additives are so effective at stabilizing dense liquid CaCO3 phases

    The transformation of amorphous calcium carbonate to calcite and classical nucleation theory

    Get PDF
    The interfaces of calcite with water, dehydrated and hydrated amorphous calcium carbonate are studied with molecular dynamics simulations. The interfacial energies demonstrate that the calcite interface is most stable when in contact with water or low concentration solutions rather than amorphous calcium carbonate. These values are used to test the interplay between supersaturation and the interfacial energy for calcite. They demonstrate that a dissolution-reprecipitation process should always be energetically preferred to a solid state transformation of amorphous calcium carbonate to calcite

    Calcite–magnesite solid solutions : using genetic algorithms to understand non-ideality

    Get PDF
    We show how a genetic algorithm (GA) generates efficiently the energy landscape of the equimolar calcite–magnesite (CaCO3—MgCO3) solid solution. Starting from a random configuration of cations and a supercell containing 480 atoms, the lowest energy form of ordered dolomite was found in all runs, in 94% of which it was located with less than 20,000 fitness evaluations. Practical implementation and operation of the GA are discussed in detail. The method can also generate both low-lying and high-lying excited states. Detailed analysis of the energy-minimised structures of the different configurations reveals that low energies are associated with reduction of strain associated with rotation of the carbonate groups, a mechanism possible only when a carbonate layer lies between a layer of just Ca and a layer of just Mg. Such strain relief is not possible in the equimolar MgO–CaO solid solution despite the similarity of the crystal structures of these binary oxides to calcite–magnesite, and therefore, the enthalpy of mixing is very high. Implications for thermodynamic configurational averaging over the minima in the energy landscape are briefly considered. Overall, the genetic algorithm is shown to be a powerful tool in probing non-ideality in solid solutions and revealing the ordering patterns that give rise to such behaviour

    Using metadynamics to obtain the free energy landscape for cation diffusion in functional ceramics : dopant distribution control in rare earth-doped BaTiO3

    Get PDF
    Barium titanate is the dielectric material of choice in most multilayer ceramic capacitors (MLCCs) and thus in the production of ≈3 trillion devices every year, with an estimated global market of ≈$8330 million per year. Rare earth dopants are regularly used to reduce leakage currents and improve the MLCC lifetime. Simulations are used to investigate the ability of yttrium, dysprosium, and gadolinium to reduce leakage currents by trapping mobile oxygen defects. All the rare earths investigated trap oxygen vacancies, however, dopant pairs are more effective traps than isolated dopants. The number of trapping sites increases with the ion size of the dopant, suggesting that gadolinium should be more effective than dysprosium, which contradicts experimental data. Additional simulations on diffusion of rare earths through the lattice during sintering show that dysprosium diffuses significantly faster than the other rare earths considered. As a consequence, its greater ability to reduce oxygen migration is a combination of thermodynamics (a strong ability to trap oxygen vacancies) and kinetics (sufficient distribution of the rare earth in the lattice to intercept the migrating defects)

    The Water–Amorphous Calcium Carbonate Interface and Its Interactions with Amino Acids

    Get PDF
    Amorphous calcium carbonate is often the first phase to precipitate during the mineralisation of calcium carbonate, before the formation of one of the crystalline polymorphs. In vivo, this phase is believed to be essential for the manufacture of minerals displaying non-equilibrium morphologies. The precipitation of this, usually transient, phase and its subsequent transformation into one of the crystalline polymorphs can be controlled by organic molecules. Here, we present a series of Molecular Dynamics simulations that explore the amorphous calcium carbonate – water interface, the attachment of amino acids onto both hydrous and anhydrous amorphous calcium carbonate and their effect on the surface. The results show that surface ions have a different coordination number distribution from bulk ions and can diffuse up to two orders of magnitude faster than their bulk counterparts, suggesting that crystallisation is much more likely to occur in this region. All the amino acids investigated bind to the amorphous calcium carbonate surfaces. However, acidic amino acids have a clear preference for the surface of amorphous CaCO3.H2O. The favoured mode of interaction of the amino acids is through amine and/or guanidine moieties. The important ramifications of the results for our understanding of protein-mineral interactions are discussed

    Using simulation to understand the structure and properties of hydrated amorphous calcium carbonate

    Get PDF
    We report results from studies using four different protocols to prepare hydrated amorphous calcium carbonate, ranging from random initial structures to melting hydrated mineral structures. All protocols give good agreement with experimental X-ray structure factors. However, the thermodynamic properties, ion coordination environments, and distribution of water for the structures produced by the protocols show statistically significant variation depending on the protocols used. We discuss the diffusivity of water through the various structures and its relation to experiments. We show that one protocol (based on melting ikaite) gives a structure where the water is mobile, due to the presence of porosity in the amorphous structure. We conclude that our models of hydrated amorphous calcium carbonate do give a range of behaviour that resembles that observed experimentally, although the variation is less marked in the simulations than in experiments

    Analysis of Mesoscopic Structured 2-Propanol/Water Mixtures Using Pressure Perturbation Calorimetry and Molecular Dynamic Simulation

    Get PDF
    In this paper we demonstrate the application of pressure perturbation calorimetry (PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/water mixtures provides two useful measurements: (i) the change in heat (ΔQ); and (ii) the [δC¯p/δp]T[δC¯p/δp]T value. The results demonstrate that the ΔQ values of the mixtures deviate from that expected for a random mixture, with a maximum at ~20–25 mol% 2-propanol. This coincides with the concentration at which molecular dynamics (MD) simulations show a maximum deviation from random distribution, and also the point at which alcohol–alcohol hydrogen bonds become dominant over alcohol–water hydrogen bonds. Furthermore, the [δC¯p/δp]T[δC¯p/δp]T value showed transitions at 2.5 mol% 2-propanol and at approximately 14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of [δC¯p/δp]T[δC¯p/δp]T are negative; this is indicative of the presence of isolated 2-propanol molecules surrounded by water molecules. Above 2.5 mol% 2-propanol [δC¯p/δp]T[δC¯p/δp]T rises, reaching a maximum at ~14 mol% corresponding to a point where mixed alcohol–water networks are thought to dominate. The values and trends identified by PPC show excellent agreement not only with those obtained from MD simulations but also with results in the literature derived using viscometry, THz spectroscopy, NMR and neutron diffraction
    • …
    corecore