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ABSTRACT

We show how a genetic algorithm (GA) generates efficiently the energy landscape of the

equimolar  calcite-magnesite  (CaCO3 �  MgCO3)  solid  solution.  Starting  from  a  random

configuration of cations and a suitable supercell, the lowest-energy form of ordered dolomite

emerges rapidly. Practical implementation and operation of the GA are discussed in detail.

The method can also generate both low-lying and high-lying excited states. Detailed analysis

of the energy-minimised structures of the different configurations reveals that low energies

are associated with reduction of strain associated with rotation of the carbonate groups, a

mechanism possible only when a carbonate layer lies between a layer of just Ca and a layer

of just Mg. Such strain relief is not possible in the equimolar MgO-CaO solid solution despite

the similarity of the crystal structures of these binary oxides to calcite-magnesite, and so the

enthalpy of mixing is very high. Implications for thermodynamic configurational averaging
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over  the  minima  in  the  energy  landscape  are  briefly  considered.  Overall,  the  genetic

algorithm is  shown to  be  a  powerful  tool  in  probing  non-ideality  in  solid  solutions  and

revealing the ordering patterns that give rise to such behaviour.
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INTRODUCTION

Phases with constant composition are rare in geology.  Most natural mineral groups

exist  over  a  range  of  chemical  composition  and  solid  solutions  play  a  major  role  in

determining mineral stability and chemical and physical behaviour. Ideality or non-ideality of

such solutions and in turn the resulting   tendency to mix or unmix often depends on the

atomic ordering.  For example, the enthalpy of mixing of disordered dolomite is positive, but

negative  for  ordered  dolomite.  Similar  behaviour  is  found  in  the  diopside-jadeite  solid

solution - it is non-ideal, yet an intermediate ordered phase forms on cooling. Non-ideality is

fundamental also to the interpretation of any processes involving partitioning between phases.

Solid  solutions  continue  to  pose  considerable  challenges for  computation,  as  does  non-

ideality in particular.  In this paper we report the use of genetic algorithms to  predict the

existence of an ordered phase ab initio and discuss why this phase is more stable than the

disordered form.

We have developed a number of computational methods for the study of solid solutions and

grossly  non-stoichiometric  compounds.  Any  technique  must  be  able  to  sample  many

arrangements of the atoms, allowing for the exchange of ions located at different positions. It

is also crucial to allow for the relaxation of the local environment of each ion, i.e.,  local

structural  movements which  can  reduce  considerably  the  energy  associated  with  ion

exchange. Local effects due to ion association or clustering must not be averaged out. We

have previously  used both  basin-sampling  approaches  such as  configurational  Boltzmann

averaging (Purton et al., 1998; Allan et al., 2001; Todorov et al.,2004; Mohn et al.,2005) and

exchange Monte Carlo methods (Purton et al., 1998, Todorov et al., 2004).   
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This paper is primarily concerned with basin-sampling and exploring the energy landscape of

a strongly non-ideal system, MgCO3-CaCO3. Such marked non-ideality poses a number of

difficult problems. Unlike the energy landscapes of the binary oxide mixtures considered in

our  previous  work,  (Purton  et  al.,  1998)  where  configurations  with  distinct  cation

arrangements  were  generated  randomly,  the  energy landscape  for  MgCO3-CaCO3 is  very

different.  It  contains  a  small  number  of  deep minima,  some of  which correspond to  the

formation  of  ordered  dolomite  at  50% Mg,  50% Ca.  Generating  cation  arrangements  at

random is  almost  bound  to  fail  to  discover  such  deep  minima with  very  small  weights

(degeneracies).  Since  only  a  few  minima  are  thermally  accessible,  simply  generating  a

random selection of starting configurations will not probe sufficiently the low-energy parts of

the landscape, and so any averaged thermodynamic property is likely to be highly inaccurate.

Monte-Carlo techniques are also likely to fail to locate such minima due to �basin trapping�;

the large mismatch in ionic radii, (Shannon, 1976) between Ca2+ (1.00 Å) and Mg2+ (0.72 Å)

is such that changes in local environments associated with any exchange are large and so the

acceptance rate of exchanges is very low even at high temperatures.  

The development of tools for locating low-lying minima for such situations is of considerable

importance. Ordering patterns may be extremely complex and somewhat counter-intuitive,

such as in garnet solid solution, where third-, fourth- and even fifth-nearest neighbour cation

orderings are energetically more important than first and second neighbours (van Westerenen

et al.,2003). Before tackling systems where ordering is not fully established, in this paper we

take a well understood system and show how a genetic algorithm (GA) together with energy

minimisation can be used to find low-energy minima in the energy landscape (Holland, 1975;

Godberg, 1989). We then examine these deep minima in some detail. 
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Most applications of GA carried out at the atomic level have involved application to and

optimisation of a range of nanoclusters (Deavon and Ho, 1995; Johnston, 2003; Chen et al.,

2007;  Ferrando et  al.,  2008).  Nevertheless  there  are  an  increasing  number  of  successful

applications to other materials science problems, such as the prediction of crystal structures

(Woodley et  al.,  1999;  Woodley  et  al.,  2008,  Oganov  et  al.,  2006,  Woodley,  2009),  and

modelling  reconstruction  and  construction  of  surfaces  (Chuang  et  al.,  2004)  and  grain

boundaries  (Zhang  et  al.,  2009;  Chua  et  al.,  2010)  as  well  as  prediction  of  ordering  in

disordered alloys (Johnston et al., 2003; Smith, 1992; Mohn and Kob, 2009; Mohn and Kob,

2011),  and searching for alloys with desired physical properties (Dudiy and Zunger 2006).

Only a very few examples have demonstrated how GAs can be used to understand ordering

patterns or local structure in grossly disordered ceramics. Mohn and Stølen (2005) used a GA

to map low energy minima for a binary oxide solid solution but their simulation box was

restricted  to  just  64  ions.  Often  much  larger  cells  are  needed  to  model  gross  non-

stoichiometry in ceramics (Taylor et al.,1997; Todorov et al., 2003, Bakken et al.,  2003).

Here we extend the earlier study of Mohn and Stølen (2005) to the more complex carbonate

system.

The CaCO3-MgCO3 solid solution itself is one of the most well-examined solid solutions in

mineralogy. The essential features are two asymmetric miscibility gaps separated by a narrow

stability  field  for  the  dolomite  (50:50)  composition.  Calorimetric  studies  (Navrotsky  and

Capobianco,  1987;  Chai  et  al.,  1995)  yield  a  negative  enthalpy of  formation  for  ordered

dolomite  relative  to  the  end-members  MgCO3 and  CaCO3.  In  contrast  the  enthalpy  of

formation of a disordered solid solution with the same 50:50 composition is positive (Burton

and  Kikuchi,  1984;  Burton,  1987).  Theoretical  work  has  been  substantial  (Burton  and

Kikuchi, 1984; Burton, 1987; Davidson, 1994, Burton and Van de Walle, 2003; Purton et
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al.,2006)  and is consistent with experiment. For example in ref  (Vinograd et al., 2007) the

fully optimised energies of a large set of randomly varied structures was used to parameterise

a  cluster  expansion  of  twelve  pair-wise  effective  interactions  to  obtain  the  activity-

composition relations and a phase diagram in good agreement with experiment.

In the next section we discuss the theoretical methods and the genetic algorithms. Results

follow. We then examine the energy landscape in detail, concentrating on the link between the

enthalpies of formation and structures of individual configurations. Of particular interest is

the local environment of individual Ca2+ and Mg2+ ions, and how the carbonate ions adjust to

accommodate cation neighbours with very different sizes, leading to the observed stability of

the  ordered  dolomite  structure.  Some  brief  remarks  about  extracting  thermodynamic

properties  for  such systems from the  energy landscape follow,  and we also  consider  the

consequences of the form of the energy landscape for the kinetics of transitions between

different orderings and hence the difficulty in preparation of ordered dolomite (the so-called

�dolomite� problem or paradox).

THEORETICAL METHODS

(a) Energy minimisation using interatomic potentials

For  the  structural  optimisations  within  the  GA algorithm  and  also  for  the  molecular

calculations we have used the set of interatomic shell-model potentials and atomic charges as

Fisler et al., (2000). Energy minimisations involved full structural optimisation (Taylor  et al.,

1997, Taylor et al., 1998) in the static limit (thus ignoring vibrational contributions) of all

lattice parameters and atomic positions with  no symmetry constraints, and were carried out

with the GULP code (Gale,  1997).  Calculated lattice parameters for MgCO3,  CaCO3 and

ordered dolomite are in good agreement with experimental values (Table 1).
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7

Since preliminary runs indicated that inclusion of the shell model in this potential set only

affected absolute energies (and then only slightly) but not the relative energies of different

arrangements, shells were omitted from the GA runs described below. Shells were included

for the molecular mechanics studies described in the final sections of this paper. In addition

since we found that in a few high-energy configurations minimisations failed because the

carbonate ion became non-planar we increased the four body O-C-O-O torsion constant to

0.7510 eV; again this has no effect on any relative energies.

(b) Ab initio optimisations

For selected  very  low and very  high energy arrangements  we also carried  out  structural

optimisations using the ab initio all-electron periodic Hartree-Fock method, as implemented

in  the CRYSTAL09 code (Dovesi et al.,  2005) Previously published basis sets were used

(Catti et al., 1991; McCarthy and Harrison, 1994; Catti et al., 1994; Towler et al., 1994) with

a  Monkhorst-Pack  k-point  grid  of  8 × 8 × 8.  Once  again,  no  symmetry  constraints  were

applied and calculated lattice parameters are in good agreement with experiment (Table 1).

      (c) Genetic Algorithms

The GA used here consists of four steps:

1 Setting  up  an  initial  population  (of  arrangements/configurations) An  initial

population is  selected  at  random. Typical  population sizes  used in  GA studies

range from a few hundred to several thousand members; here the initial population

is 1000. Each member of the initial population is generated by distributing 48 Ca

and 48 Mg ions  at  random over  the cation positions  in  a  hexagonal supercell

containing,  in  total,  480  atoms  and  six  cation  layers.  The  energy  of  each

configuration  is  calculated by a static  energy minimisation  with full  structural

relaxation (optimisation) of all basis atom positions and unit cell parameters. We
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shall  see  later  that  while  it  is  compute-time-intensive  this  full  optimisation  is

crucial.

2 Selection  Parents with high fitness are preferentially selected using an appropriate

scheme.  We use  a  Boltzmann  selection  where  two  parents  are  chosen  with  a

Boltzmann probability, given by exp(-E/kT) where E is the energy difference of

a configuration relative to the lowest energy so far found and, after a number of

test calculations, the value of  T was set to 7000 K.The temperatue controlls the

amount of selection i.e. the probability of choosing two parents. 

3 3. Mating  We use a real-space crossover where slices and small clusters from the

Parent 1 structure are randomly selected and combined with the complementary

structure of Parent 2, maintaining the correct composition. We also use a uniform

crossover  where  an  random set  of  cations  are  selected  from Parent  1  and the

complementary set of cations is selected from Parent 2, with the constraint that the

child has the correct composition. Far less bonds are broken when a real-space

crossover is applied compared to that of a binary uniform crossover  and the child

inherits  more local  structural  information  from its  parents.  On the  contrary,  a

uniform crossover ensure more diversity in the population since no such structural

constraints  are  imposed  on  the  crossover.  Results  below are  reported  using  a

uniform crossover but we compare with calculations carried out using a real-space

crossover. 

4 4. A full structural optimisation of the child structure is completed, as described

above, and the child structure is then added to the population if it has a lower

energy than the worst (highest-energy) member in the population, which is itself

removed. An important modification that avoids the slow convergence associated

with �conventional� GA is the incorporation of the symmetry of the underlying

lattice  within  the  GA operators  using a  randomly chosen symmetry  crossover

operation,  i.e.,  we  simply  replace  the  child  with  one  which  is  symmetrically

equivalent (Mohn and Kob, 2009). This drastically increases the diversity of the

population  since  different  symmetrically  equvalent  regions  on  the  energy

landscape is  explored simultanously  as  explained  in  detail  by  Mohn and Kob

(2009). In this work only translational symmetry operations along the c-axis was

used which creates sufficient diversity to locate the global minima configuration.

5 Mutation  This  involves  the  exchange  of  a  pair  of  different  cations,  chosen  at

random, in the child. In this work the mutation probability is 0.1.
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Steps 2) - 4) are repeated until there are no further changes in the lowest energy

arrangements. 

It is straightforward to adapt this procedure to search for high-energy rather than low-energy

arrangements,  provided  the  method  used  for  the  energy  calculation  is  accurate  for  the

different interatomic distances often sampled in such arrangements. In this case, Step 2 is

modified  by  replacing   E  with -E  so  that  the  members  in  each  population  with  high

energies are selected to mate preferentially, and a child is only added to the population if it

has higher energy than the lowest-energy member.

RESULTS

GA

Figure 1 shows the evolution of the lowest-energy member of the population as a function of

the number of generations, N. The three dotted lines show the progress of typical calculations

each starting from a different initial population of 1000 randomly-generated structures. The

red curve is the average lowest-energy after  N generations of the results obtained from 100

such initial populations. The crystal structure is shown at three different stages of one of the

calculations, showing the emergence of intact layers along the c-axis containing single cation

types and finally  the emergence of ordered dolomite as the lowest-energy structure.  This

global minimum structure contains alternating layers of Mg and Ca ions along the c-axis, and

each individual cation layer contains only one type of ion. 94% of all runs reached the global

minimum within 20000 generations and 80% of all runs within 10000 generations.  

The speed at which the GA can find orderings very similar in structure and energy to ordered

dolomite with layers of one only cation type along the c-axis is striking. Searching for low-
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1

energy structures is generally a very challenging problem for unit cells with, as here, at least

several hundred atoms. There are more than 6.4*1027 arrangements of the cations for the unit

cell used in this work, which contains a total of 96 cations of which 50% are Mg. The fact

that  the  global  minimum  structure  can  be  found  quickly  and  reliably  demonstrates  the

effectiveness of GA methods for searching for low-energy structures in systems of this type.

The benefit of including the symmetry crossover operations is evident. The global minimum

structure was only found in 3% of all runs after 20000 steps, in contrast to 94% when the

symmetry  operations  were  used.  When  a   real-space  crossover  is  applied  instead  of  an

uniform crossover the successrate was slightly lower becacause the diversty in the population

is larger when an uniform crossover is used. However, when using a real space crossover the

convergence to  the global minima was slightly faster  since fewer bonds are broken after

crossover since the child inherits more structural information from its parents (the crossover

is more efficent).  It  is worth bearing in mind that when full  relaxations of the structures

generated in each generation are not included, the GA algorithm fails to find the ordered

dolomite structure. This emphasises the necessity of including full relaxations of all the atom

positions and unit cell parameters, despite the considerable extra expense in computer time.

The reasons at the atomic level for this will become clearer in the next section. 

The GA algorithm is readily reversed to generate states which are high, rather than low, in

energy.  There is no one global maximum, but rather a large number of structures close in

energy in which each layer along the c-axis contains both Mg and Ca ions.
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Structure analysis

We have probed the important features of low- and high-energy structures through molecular

mechanics  calculations,  carried  out  with  full  structural  optimisations  and  interatomic

potentials  as described earlier.  For comparison, geometry optimisations and total  energies

were also calculated using the periodic ab initio Hartree-Fock method. We wish to examine

the structural  changes that  accompany the differences  in energy between different  cation

orderings  and ultimately  give  rise  to  the  strong non-ideality  of  the  CaCO 3-MgCO3 solid

solution.  Four  different  orderings  of  Mg0.5Ca0.5CO3 have  been  investigated  (Figure 2),

selected as those of particular interest based on the GA results.

For these studies we have used a unit cell containing twelve cations (six cation layers with

two cations per layer). Energies (in the static limit) are reported as the energy of formation of

the mixed system relative to that of the pure end-members:

Eformation = E(Mg0.5Ca0.5CO3) � ½E(MgCO3) � ½E(CaCO3)

The energies of the four cation orderings are given in Table 2.  While  the numbers differ

quantitatively, all the trends are the same with both molecular mechanics and Hartree-Fock

methods. The Hartree-Fock formation energies are all slightly less negative (or more positive)

than those calculated with the interatomic potentials.  For  comparison,  Chan and Zungers

formation energy (Chan and Zunger,  2009) for ordered dolomite calculated using density

functional theory in the generalised gradient approximation is -39 meV per cation pair, while
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1

the experimentally determined value is approximately -100 meV per cation pair (Navrotsky,

1987). 

DISCUSSION

The results from the molecular mechanics calculations show that, in the structures in

which  each  layer  contains  cations  of  only  a  single  element  (Orderings  1,  2  and 3),  the

carbonate  groups lie  flat  between the  cation  layers  (Figure 2a-c),  as  they do in  the  end-

members CaCO3 and MgCO3.

In CaCO3 and MgCO3, the carbonate group is oriented to give identical Ca-O/Mg-O

distances to cations in the layers both above and below the anion layer (Figure 2a and b). In

ordered  dolomite,  clearly  the  cation-O  distances  should  not  all  be  identical,  but  Ca-O

distances should be significantly longer than Mg-O. If the same orientation of the carbonate

groups were maintained in ordered dolomite as in CaCO3 and MgCO3, the only degree of

freedom allowing optimisation  of  the  Mg-O and Ca-O distances  would  be  the  interlayer

spacing.  However,  an  additional  degree  of  freedom  is  obtained  through  rotation  of  the

carbonate group. Thus, when there are alternating layers of Ca and Mg ions along the c-axis

(as in ordered dolomite, Ordering 1, Figure 2a), the carbonate group rotates within the  ab-

plane so that the oxygen atoms are closer to the Mg ions in one neighboring cation layer and

further from the calcium ions in the other neighbouring cation layer (Figure 3c). Hence, the

rotation of the carbonate groups is crucial since it allows both the Mg-O and Ca-O distances

to be optimised without introducing significant strain into the C-O bonds. The rotation of the

carbonate group in ordered dolomite relative to that in CaCO3 (and MgCO3) is shown in

Figure 3d.

Like  ordered  dolomite,  Orderings  2  and 3  also  have  intact  Mg2+ and  Ca2+ layers
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1

(Figures 2b and c), but are higher in energy. In Ordering 3, for which Table 2 shows that the

formation energy is positive, there are three adjacent layers of cations of the same element

(Figure 2b). The lattice parameters are intermediate between those of CaCO3 and MgCO3, so

the CaCO3 layers are compressed in the ab-plane relative to pure calcite, while the MgCO3

layers  are  stretched relative  to  pure  magnesite  (Figure  3e).  The Ca-O distances are  thus

shorter than those in the end-member CaCO3, while Mg-O distances are longer. Some strain

is  also  found  in  the  C-O  bonds  within  the  carbonate  groups,  with  these  bonds  being

significantly compressed in anion layers adjacent to Ca (Figure 3e) and stretched in anion

layers adjacent to Mg.

Except  at  the interfaces  between the Ca and Mg layers,  these strains  in  the bond

lengths  cannot  be  relieved  by  rotations  of  the  carbonate  groups,  in  contrast  to  ordered

dolomite.  In  these  structures  with  two or  more  adjacent  layers  with  cations  of  the  same

element (e.g.  Orderings 2 and 3,  Figure 2b and c),  no advantage can be gained through

rotation of the carbonate groups. For example, rotation to decrease the Mg-O distances in one

direction (e.g. to the layer below) would increase them in the other direction (e.g. to the layer

above). Hence, the carbonate groups between two layers of the same cation remain in the

same orientation as in pure magnesite and calcite; the bond lengths are compromised because

the lattice parameters are in between those of the end-members and there are insufficient

degrees of freedom for bond length optimisation.

Thus, rotation of the carbonate groups to optimise bond lengths is only effective when

the anion layer has Mg ions in one neighbouring layer and Ca ions in the other, and so the

lowest energy ordering for Mg0.5Ca0.5CO3 is that with alternating layers of Ca and Mg ions.

Ordering 2 has a formation energy intermediate between those of ordered dolomite (Ordering

1) and Ordering 3 (Table 2); the number of anion layers with Mg ions in one neighbouring

layer and calcium ions in the other is also intermediate between Ordering 1 and Ordering 3.
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1

This  again  indicates  the  energetic  favorability  of  the  cation  species  alternating  between

layers,  so  that  the  carbonate  groups  can  rotate  to  achieve  optimal  O-Ca  and  O-Mg

separations.

In Ordering 4, in which all layers contain a mixture of Mg2+ and Ca2+ (Figure 2d), the

carbonate groups are distorted and no longer lie  flat  between the cation layers.  There  is

considerable variation in C-O bond lengths in this particular ordering and O-C-O bond angles

range from 117.2º to 122.5º. In contrast,  in the ordered dolomite structure,  all  C-O bond

lengths are the same and all O-C-O bond angles are 120.0º (as they are in the CaCO 3 and

MgCO3 end-members).  Similarly,  in  the  ordered  dolomite  structure,  all  Mg-O and  Ca-O

distances are the same, whereas there is significant variation in these distances for Ordering

4. Several different orderings with layers containing a mixture of Mg2+ and Ca2+ have been

investigated in addition to Ordering 4; all have positive energies of formation, with Ordering

4 the maximum. This indicates that layers containing a mixture of cations are unfavourable,

consistent with the GA results.  Chan and Zunger (2009) also found that a random cation

distribution is high in energy and accompanied by carbonate ion distortions and strain. All the

same qualitative conclusions and trends are also evident in the results from the Hartree-Fock

calculations.

Ordered dolomite has a small but negative enthalpy of mixing (Table 2). The rotation

of the carbonate group also allows more volume-efficient stacking of the layers than in either

MgCO3 or CaCO3 end-members. The separation along the c-axis of a layer of Mg2+ ions and

the neighbouring anion layer is 1.249 Å in MgCO3 and 1.228 Å in ordered dolomite; the

separation in the c-axis direction of a layer of Ca2+ ions and the neighbouring anion layer is

1.421 Å in CaCO3 and 1.409 Å in ordered dolomite. Thus the volume of ordered dolomite is

~ 1 % smaller than the average volume of MgCO3 and CaCO3 and at fixed temperature the
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thermodynamic stability of ordered dolomite with respect to the end-members increases with

increasing pressure.

The nature  of  the  low energy excited  states  as  revealed by  both  the  GA and the

molecular mechanics calculations also provides some insight into the difficulty of formation

of ordered dolomite (Deelman, 1999) If we �funnel� down in energy we end up in local

minima with structures in which each cation layer contains ions of only one element but the

Ca2+ and Mg2+ are not alternating; there are substantial kinetic barriers in proceeding further

to  the  global  minimum,  since  this  would  require  interchange  of  cations  between  layers,

producing intermediate high-energy structures with a mixture of Ca and Mg cations in the

layers. The activation energies for such cation interchanges are large.

We end with a few remarks about the consequences of non-ideality for calculation of

thermodynamic properties, in particular by configurational averaging (often referred to as

basin sampling). In principle a solid solution can assume any state, i.e., each atom can be at

any position and each will have a different probability. However, the only states of practical

importance away from the melting point lie at the bottom of  K local minima in the energy

landscape,  so  the  thermodynamic  averaging  is  carried  out  over  results  from  a  set  of

optimisations of different cation arrangements within a given supercell. The configurational

averaging  approach  to  solid  solutions  commonly  uses  the  isobaric-isothermal  (NPT)

ensemble, so, for example, the enthalpy of the solid solution H is given by; 

(1)

where  Gk and  Hk are the free energy and enthalpy of each local minimum respectively. All

vibrational entropy terms are usually neglected so Gk is replaced by Hk calculated in the static

limit.
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For other than the smallest supercells it is impractical to sum over all K configurations

and so both summations in Eq. (1) are restricted to  K' configurations chosen at random. In

previous  work  on  non-ideal  solid  solutions  showing  much  smaller  deviations  from non-

ideality than magnesite-calcite, we demonstrated convergence with a manageable value of K'

configurations, chosen at random. For a 32-atom supercell of composition 50% MgO /50%

MnO  convergence  of  the  formation  enethalpy  of the  solid  solution  to  0.04  kJ  mol−1 is

typically obtained with only ≈150 out of a total of 12,870 configurations (Allan et al., 2001).

This procedure requires adaption for very strongly non-ideal systems such as MgCO3-

CaCO3.  For so-called �disordered� dolomite, a random selection of configurations can be

used, excluding any with negative heats of formation. In any case, in any reasonably sized

simulation cell the chance of selection of an ordering with a negative heat of formation is

extremely small due to the small weightings of the highly-ordered states which are the only

states with such exothermic heats of formation. For ordered dolomite a modified procedure is

needed. A working procedure is to select a random set of configurations including the lowest

energy state and any state of energy within kT of the ground state as indicated by the GA. In

practice it is more accurate not to include the weightings of the individual states when using

equation  (1)  with  a  small  number  of  configurations;  this  apparently  counterintuitive

conclusion arises because of the two summations in this equation. Including only a few states

fully  weighted  tends  to  underestimate  the  partition  function  in  the  denominator  and  so

overestimates the final result. In our previous work (Purton et al., 2004) we did not follow

such a procedure and consequently our results for the enthalpy of mixing were overestimated.

The modified method gives values both for the enthalpy of formation for dolomite and its

temperature variation very close to those obtained using the Cluster  Variation Method in

(Burton and Van de Walle, 2003). 
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CONCLUSIONS

In  this  paper  we  have  shown  that  a  GA  incorporating  symmetry  is  a  particularly

computationally efficient method of establishing non-ideality and any preferential ordering in

a solid solution. Combined with configurational averaging (basin sampling) it thus provides a

very powerful tool for modelling solid solutions and non-stoichiometry in general. It readily

provides information as to low-lying and higher excited states. Extension to high pressures

would be straightforward. Here the generated energy landscape provides atomistic insights

into why dolomite forms � the rotation of the carbonate ions between adjacent layers of Ca

and Mg relieves strain � and also into the dolomite problem. The presence of a polyatomic

ion is thus crucial for the formation of an ordered mixed phase � the same reduction of strain

is impossible in the MgO-CaO binary solution despite the similarity of the rock salt  and

calcite structures. The understanding of local order in substitutionally disordered materials is

important in fields as diverse as the development of new materials with improved mechanical

or electrical properties and the understanding of fundamental geochemical processes in the

deep Earth, and we hope the techniques and the encouraging results presented in this paper

will assist in such investigations.
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Table  1.  Calculated  and  experimental  lattice  parameters  for  magnesite,  calcite  and

dolomite.

Table 2. Optimised volumes and formation energies, in the static limit, calculated using

molecular mechanics and (in parentheses) periodic Hartree-Fock theory, of some different

cation orderings in  Mg0.5Ca0.5CO3. Ordering 1 is  ordered dolomite with alternating

layers of Ca and Mg along the c-axis. Note the large differences in energy between the

four orderings.

Figure 1.  Progression plots (lowest unit cell energy vs. number of generations N) of the

genetic  algorithm for  Mg0.5Ca0.5CO3  using a  uniform crossover.  The energy value  is

relative to the global energy minimum. The unit cell contained 480 atoms (96 cations).

The dotted lines show the progress of the calculations starting from three different initial

populations  of  1000  randomly-generated  structures.  The  red  curve  shows  the  energy

obtained from averaging the results at each generation for 100 such starting populations.

In the accompanying crystal structures, the a-axis points out of the plane of the paper, Mg

ions are orange, Ca blue, C grey and oxygen red. The black arrows show the step and the

GA run to which these structures relate.

Figure  2.  (a)  Ordered dolomite  (Ordering  1),  (b)  Ordering 2,  (c)  Ordering  3 and (d)

Ordering 4. Corresponding formation energies are listed in Table 2. The blue atoms are

Ca atoms, the orange atoms Mg, the brown atoms carbon and the red atoms oxygen. The

black lines show the unit cell boundaries. The c-axis direction is the vertical direction.

Figure 3. Two cation layers (ab-plane) and one anion layer of (a) CaCO3, (b) MgCO3, (c)

ordered dolomite (Ordering 1), viewed along the  c-axis (cations in the layer below the
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anion layer are labelled �1�; cations above the anion layer are labelled �2�). (d) Ordered

dolomite with the positions of the selected atoms in the end members MgCO 3 and CaCO3

overlaid (pink atoms show the position of the oxygen atoms in MgCO3 and CaCO3). Note

that,  in  ordered dolomite,  the carbonate group rotates clockwise to move the oxygen

atoms closer to Mg ions in the layer above and further from Ca ions in the layer below,

hence optimizing both the Mg-O and Ca-O distances. (e) Ordering 3 (the calcium layer

shown is the middle of the three adjacent layers, Figure 2b). Blue atoms are Ca, orange

atoms are Mg, brown atoms are carbon and red atoms are oxygen. The black lines show

the unit cell boundaries. Some important bond lengths are shown; note that the Ca-O and

C-O bond lengths in ordered dolomite (c) are closer to those of pure calcite (a) than in

Ordering 3 (e), in which these bond lengths are reduced.
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MgCO3 CaCO3 Dolomite

a / Å c / Å a / Å c / Å a / Å c / Å

Molecular 
mechanics

4.679 14.915 4.991 17.057 4.849 15.818

Ab iniio 
Hartree-Fock

4.648 15.092 5.065 17.234 4.842 16.189

Experimental 4.636a 15.021a 4.989a 17.042a 4.807b,4.803c 16.003b,15.984c

a Ref (Chang and Reeder, 1999),  b  ref Taylor, 1997) and  c  ref (Althoff, 1977)



Ordering
Volume

/ Å3 per caion pair
E
formaion

/ meV per caion pair

1 107.37 (109.59) -80 (-52)

2 107.64 (109.91) -13 (52)

3 107.93 (110.20) 54 (158)

4 107.53 (110.34) 169 (281)








