28,988 research outputs found

    Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low temperature regime

    Get PDF
    We present an analysis of the relaxation dynamics of finite-size topological qubits in contact with a thermal bath. Using a continuous-time Monte Carlo method, we explicitly compute the low-temperature nonequilibrium dynamics of the toric code on finite lattices. In contrast to the size-independent bound predicted for the toric code in the thermodynamic limit, we identify a low-temperature regime on finite lattices below a size-dependent crossover temperature with nontrivial finite-size and temperature scaling of the relaxation time. We demonstrate how this nontrivial finite-size scaling is governed by the scaling of topologically nontrivial two-dimensional classical random walks. The transition out of this low-temperature regime defines a dynamical finite-size crossover temperature that scales inversely with the log of the system size, in agreement with a crossover temperature defined from equilibrium properties. We find that both the finite-size and finite-temperature scaling are stronger in the low-temperature regime than above the crossover temperature. Since this finite-temperature scaling competes with the scaling of the robustness to unitary perturbations, this analysis may elucidate the scaling of memory lifetimes of possible physical realizations of topological qubits.Comment: 14 Pages, 13 figure

    High-j single-particle neutron states outside the N=82 core

    Get PDF
    The behaviour of the i13/2 and h9/2 single-neutron strength was studied with the (4He,3He) reaction on 138Ba, 140Ce, 142Nd and 144Sm targets at a beam energy of 51 MeV. The separation between the single-neutron states i13/2 and h9/2 was measured in N =83 nuclei with changing proton number. To this end spectroscopic factors for states populated in high-l transfer were extracted from the data. Some mixing of l=5 and 6 strength was observed with states that are formed by coupling the f7/2 state to the 2+ and 3- vibrational states and the mixing matrix elements were found to be remarkably constant. The centroids of the strength indicate a systematic change in the energies of the i13/2 and h9/2 single-neutron states with increasing proton number that is in quantitative agreement with the effects expected from the tensor interaction.Comment: 12 pages of text, 3 diagram

    New Image Statistics for Detecting Disturbed Galaxy Morphologies at High Redshift

    Get PDF
    Testing theories of hierarchical structure formation requires estimating the distribution of galaxy morphologies and its change with redshift. One aspect of this investigation involves identifying galaxies with disturbed morphologies (e.g., merging galaxies). This is often done by summarizing galaxy images using, e.g., the CAS and Gini-M20 statistics of Conselice (2003) and Lotz et al. (2004), respectively, and associating particular statistic values with disturbance. We introduce three statistics that enhance detection of disturbed morphologies at high-redshift (z ~ 2): the multi-mode (M), intensity (I), and deviation (D) statistics. We show their effectiveness by training a machine-learning classifier, random forest, using 1,639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies that had been previously classified by eye by the CANDELS collaboration (Grogin et al. 2011, Koekemoer et al. 2011). We find that the MID statistics (and the A statistic of Conselice 2003) are the most useful for identifying disturbed morphologies. We also explore whether human annotators are useful for identifying disturbed morphologies. We demonstrate that they show limited ability to detect disturbance at high redshift, and that increasing their number beyond approximately 10 does not provably yield better classification performance. We propose a simulation-based model-fitting algorithm that mitigates these issues by bypassing annotation.Comment: 15 pages, 14 figures, accepted for publication in MNRA

    Nanoscale Torsional Optomechanics

    Full text link
    Optomechanical transduction is demonstrated for nanoscale torsional resonators evanescently coupled to optical microdisk whispering gallery mode resonators. The on-chip, integrated devices are measured using a fully fiber-based system, including a tapered and dimpled optical fiber probe. With a thermomechanically calibrated optomechanical noise floor down to 7 fm/sqrt(Hz), these devices open the door for a wide range of physical measurements involving extremely small torques, as little as 4x10^-20 N*m.Comment: 4 pages, 4 figures - Accepted to APL Oct 22nd, 2012. To appear in February 4th issue - as cover articl

    Skeleton and fractal scaling in complex networks

    Full text link
    We find that the fractal scaling in a class of scale-free networks originates from the underlying tree structure called skeleton, a special type of spanning tree based on the edge betweenness centrality. The fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as a fractal skeleton dressed with local shortcuts. An in-silico model with both the fractal scaling and the scale-invariance properties is also constructed. The framework of fractal networks is useful in understanding the utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR

    Project for the analysis of technology transfer Quarterly report, 1 Apr. 1969 - 30 Jun. 1969

    Get PDF
    Patterns, statistical analyses, and case studies of transfer and utilization of NASA generated technolog

    Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors

    Full text link
    The technologically important problem of predicting Auger recombination lifetimes in semiconductors is addressed by means of a fully first--principles formalism. The calculations employ highly precise energy bands and wave functions provided by the full--potential linearized augmented plane wave (FLAPW) code based on the screened exchange local density approximation. The minority carrier Auger lifetime is determined by two closely related approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance formulation combining Auger recombination and its inverse process, impact ionization, in a unified framework. Calculated carrier lifetimes determined with the direct and indirect methods show excellent consistency \emph{i}) between them for nn-doped GaAs and \emph{ii}%) with measured values for GaAs and InGaAs. This demonstrates the validity and accuracy of the computational formalism for the Auger lifetime and indicates a new sensitive tool for possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte

    Space station automation of common module power management and distribution

    Get PDF
    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment
    • …
    corecore