research

Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors

Abstract

The technologically important problem of predicting Auger recombination lifetimes in semiconductors is addressed by means of a fully first--principles formalism. The calculations employ highly precise energy bands and wave functions provided by the full--potential linearized augmented plane wave (FLAPW) code based on the screened exchange local density approximation. The minority carrier Auger lifetime is determined by two closely related approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance formulation combining Auger recombination and its inverse process, impact ionization, in a unified framework. Calculated carrier lifetimes determined with the direct and indirect methods show excellent consistency \emph{i}) between them for nn-doped GaAs and \emph{ii}%) with measured values for GaAs and InGaAs. This demonstrates the validity and accuracy of the computational formalism for the Auger lifetime and indicates a new sensitive tool for possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020