76 research outputs found

    Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids

    Get PDF
    Background & aims Intake assessment in multicenter trials is challenging, yet important for accurate outcome evaluation. The present study aimed to characterize a multicenter randomized controlled trial with a healthy Nordic diet (HND) compared to a Control diet (CD) by plasma and urine metabolic profiles and to associate them with cardiometabolic markers. MethodsDuring 18-24 weeks of intervention, 200 participants with metabolic syndrome were advised at six centres to eat either HND (e.g. whole-grain products, berries, rapeseed oil, fish and low-fat dairy) or CD while being weight stable. Of these 166/159 completers delivered blood/urine samples. Metabolic profiles of fasting plasma and 24 h pooled urine were analysed to identify characteristic diet-related patterns. Principal components analysis (PCA) scores (i.e. PC1 and PC2 scores) were used to test their combined effect on blood glucose response (primary endpoint), serum lipoproteins, triglycerides, and inflammatory markers. ResultsThe profiles distinguished HND and CD with AUC of 0.96 ± 0.03 and 0.93 ± 0.02 for plasma and urine, respectively, with limited heterogeneity between centers, reflecting markers of key foods. Markers of fish, whole grain and polyunsaturated lipids characterized HND, while CD was reflected by lipids containing palmitoleic acid. The PC1 scores of plasma metabolites characterizing the intervention is associated with HDL (β = 0.05; 95% CI: 0.02, 0.08; P = 0.001) and triglycerides (β = -0.06; 95% CI: -0.09, -0.03; P ConclusionsPlasma and urine metabolite profiles from SYSDIET reflected good compliance with dietary recommendations across the region. The scores of metabolites characterizing the diets associated with outcomes related with cardio-metabolic risk. Our analysis therefore offers a novel way to approach a per protocol analysis with a balanced compliance assessment in larger multicentre dietary trials.The study was registered at clinicaltrials.gov with NCT00992641.</p

    Dietary Fatty Acids, Body Composition and Ectopic Fat : Results from Overfeeding Studies in Humans

    No full text
    The aim of this thesis was to investigate the effects of dietary fatty acids on body composition and ectopic fat in humans, with emphasis on the role of the omega-6 polyunsaturated fatty acid (PUFA) linoleic acid (18:2n-6) and the saturated fatty acid (SFA) palmitic acid (16:0). The overall hypothesis was that linoleic acid would be beneficial compared with palmitic acid during overfeeding, as previously indicated in animals. Papers I, II and IV were double-blinded, randomized interventions in which different dietary fats were provided to participants and Paper III was a cross-sectional study in a community-based cohort (PIVUS) in which serum fatty acid composition was assessed as a biomarker of dietary fat intake. In Paper I, overfeeding with sunflower oil (n-6 PUFA) for 7 weeks caused less accumulation of liver fat, visceral fat and total body fat (as assessed by MRI) compared with palm oil (SFA) in young and lean subjects despite similar weight gain among groups. Instead, sunflower oil caused a larger accumulation of lean tissue. In Paper II, plasma from Paper I was analyzed with NMR-based metabolomics, aiming to identify metabolites differentially affected by the two dietary treatments. Acetate decreased by PUFA and increased by SFA whereas lactate increased by PUFA and decreased by SFA. In Paper III, the proportion of linoleic acid in serum was inversely associated with contents of visceral-, subcutaneous- and total body adipose tissue whereas the proportion of palmitic acid was directly associated with visceral- and total body adipose tissue in 70-year old men and women. In Paper IV, overfeeding with sunflower oil for 8 weeks caused less accumulation of liver fat compared with palm oil also in overweight and obese subjects. SFA increased visceral fat in men only. Accumulation of lean tissue was similar between groups. In conclusion, SFA (palmitic acid) from palm oil promotes marked liver fat accumulation in both normal-weight and overweight/obese subjects during overeating, whereas n-6 PUFA (linoleic acid) from sunflower oil prevents such liver fat accumulation. Diverging effects of SFA and PUFA on visceral adipose tissue and lean tissue may only be applicable in some groups and/or circumstances. These results imply that negative effects associated with weight gain (e.g. fatty liver) may be partly counteracted by the type fat in the diet, overall supporting a beneficial role of diets higher in unsaturated fat compared with saturated fat for preventing liver fat accumulation.

    Dietary Fatty Acids, Body Composition and Ectopic Fat : Results from Overfeeding Studies in Humans

    No full text
    The aim of this thesis was to investigate the effects of dietary fatty acids on body composition and ectopic fat in humans, with emphasis on the role of the omega-6 polyunsaturated fatty acid (PUFA) linoleic acid (18:2n-6) and the saturated fatty acid (SFA) palmitic acid (16:0). The overall hypothesis was that linoleic acid would be beneficial compared with palmitic acid during overfeeding, as previously indicated in animals. Papers I, II and IV were double-blinded, randomized interventions in which different dietary fats were provided to participants and Paper III was a cross-sectional study in a community-based cohort (PIVUS) in which serum fatty acid composition was assessed as a biomarker of dietary fat intake. In Paper I, overfeeding with sunflower oil (n-6 PUFA) for 7 weeks caused less accumulation of liver fat, visceral fat and total body fat (as assessed by MRI) compared with palm oil (SFA) in young and lean subjects despite similar weight gain among groups. Instead, sunflower oil caused a larger accumulation of lean tissue. In Paper II, plasma from Paper I was analyzed with NMR-based metabolomics, aiming to identify metabolites differentially affected by the two dietary treatments. Acetate decreased by PUFA and increased by SFA whereas lactate increased by PUFA and decreased by SFA. In Paper III, the proportion of linoleic acid in serum was inversely associated with contents of visceral-, subcutaneous- and total body adipose tissue whereas the proportion of palmitic acid was directly associated with visceral- and total body adipose tissue in 70-year old men and women. In Paper IV, overfeeding with sunflower oil for 8 weeks caused less accumulation of liver fat compared with palm oil also in overweight and obese subjects. SFA increased visceral fat in men only. Accumulation of lean tissue was similar between groups. In conclusion, SFA (palmitic acid) from palm oil promotes marked liver fat accumulation in both normal-weight and overweight/obese subjects during overeating, whereas n-6 PUFA (linoleic acid) from sunflower oil prevents such liver fat accumulation. Diverging effects of SFA and PUFA on visceral adipose tissue and lean tissue may only be applicable in some groups and/or circumstances. These results imply that negative effects associated with weight gain (e.g. fatty liver) may be partly counteracted by the type fat in the diet, overall supporting a beneficial role of diets higher in unsaturated fat compared with saturated fat for preventing liver fat accumulation.

    Dietary Fatty Acids, Body Composition and Ectopic Fat : Results from Overfeeding Studies in Humans

    No full text
    The aim of this thesis was to investigate the effects of dietary fatty acids on body composition and ectopic fat in humans, with emphasis on the role of the omega-6 polyunsaturated fatty acid (PUFA) linoleic acid (18:2n-6) and the saturated fatty acid (SFA) palmitic acid (16:0). The overall hypothesis was that linoleic acid would be beneficial compared with palmitic acid during overfeeding, as previously indicated in animals. Papers I, II and IV were double-blinded, randomized interventions in which different dietary fats were provided to participants and Paper III was a cross-sectional study in a community-based cohort (PIVUS) in which serum fatty acid composition was assessed as a biomarker of dietary fat intake. In Paper I, overfeeding with sunflower oil (n-6 PUFA) for 7 weeks caused less accumulation of liver fat, visceral fat and total body fat (as assessed by MRI) compared with palm oil (SFA) in young and lean subjects despite similar weight gain among groups. Instead, sunflower oil caused a larger accumulation of lean tissue. In Paper II, plasma from Paper I was analyzed with NMR-based metabolomics, aiming to identify metabolites differentially affected by the two dietary treatments. Acetate decreased by PUFA and increased by SFA whereas lactate increased by PUFA and decreased by SFA. In Paper III, the proportion of linoleic acid in serum was inversely associated with contents of visceral-, subcutaneous- and total body adipose tissue whereas the proportion of palmitic acid was directly associated with visceral- and total body adipose tissue in 70-year old men and women. In Paper IV, overfeeding with sunflower oil for 8 weeks caused less accumulation of liver fat compared with palm oil also in overweight and obese subjects. SFA increased visceral fat in men only. Accumulation of lean tissue was similar between groups. In conclusion, SFA (palmitic acid) from palm oil promotes marked liver fat accumulation in both normal-weight and overweight/obese subjects during overeating, whereas n-6 PUFA (linoleic acid) from sunflower oil prevents such liver fat accumulation. Diverging effects of SFA and PUFA on visceral adipose tissue and lean tissue may only be applicable in some groups and/or circumstances. These results imply that negative effects associated with weight gain (e.g. fatty liver) may be partly counteracted by the type fat in the diet, overall supporting a beneficial role of diets higher in unsaturated fat compared with saturated fat for preventing liver fat accumulation.

    VARFÖR BYTER INTE DU OM? : Elevers förklaringar till att de inte byter om och deras lärares syn på fenomenetExamensarbete lärarprogrammet

    No full text
    I vår studie har vi haft för avsikt att i första hand undersöka omklädningsrummets påverkan påelevers deltagande i idrottsundervisningen. I en nationell utvärdering gjord på begäran avSkolverket uppgav 56 % av föräldrarna att idrott och hälsa är ett av de fem viktigaste ämnenai skolan. Frågan vi ställde oss var då ”Hur kommer det sig då att en del elever så ofta intebyter om till lektionerna?”. Om föräldrarna är så positivt inställda till ämnet idrott och hälsa,hur kommer det sig då att så många elever så ofta har lapp med sig om att inte vara med. Uppsatsen kommer ha sin teoretiska grund i Foucaults maktperspektiv och ett antalidrottspsykologiska perspektiv kring motivation och gruppdynamik. Det har gjorts en deldjupdykningar i ämnet bland tidigare C-uppsatser (Hanna Forsmark 2010, Anna Mårtenssonoch Maarit Nilsson 2005) men vi saknade fokus på de äldre eleverna i grundskolan och valdedärför att lägga vårt fokus på dem. Dessutom ville vi veta hur lärare som undervisar i idrottoch hälsa ser på elever som inte byter om till lektionerna. Resultatet av vår undersökning visar på att omklädningsrummet har en stor betydelse för attinte byta om, snuskiga duschrum, små omklädningsrum med mera är några exempel urempirin. Förutom omklädningsrummet fanns det en generell positiv bild till ämnet, meninnehållet delade informanterna i två läger. Även om eleverna var positiva till ämnet verkadede inte riktigt veta vad de lärde sig och till vilken nytta de var fysisk aktiva, det som framgickvar främst betyget och efter ledsagning kom de fram till mer hälsoinriktade aspekter

    Fats and oils – a scoping review for Nordic Nutrition Recommendations 2023

    No full text
    This scoping review for the Nordic Nutrition Recommendations 2023 summarizes the available evidence on fats and oils from a food level perspective. A literature search for systematic reviews (SRs) and meta-analyses was conducted in PubMed. There are few SRs and meta-analyses available that investigate the association between fats and oils (food level) and health outcomes; the majority report associations at the nutrient level (fatty acid classes). All identified SRs and meta-analyses were of low methodological quality, thus the findings and conclusions presented within this scoping review should be interpreted cautiously. Based on this limited evidence, the following results were indicated: the intake of olive oil may be associated with reduced risk of cardiovascular disease (CVD), type 2 diabetes (T2D), and total mortality in prospective cohort studies. The intake of butter was not associated with the risk of CVD but may be related to slightly lower risk of T2D and higher risk of total mortality in prospective cohort studies. For cancer, the evidence is sparse and primarily based on case-control studies. The intake of olive oil may be associated with reduced risk of cancer, whereas the intake of butter may be associated with increased risk of certain cancer types. Butter increases LDL-cholesterol when compared to virtually all other fats and oils. Palm oil may increase LDL-cholesterol when compared to oils rich in MUFA or PUFA but may not have any effect on glucose or insulin. Coconut oil may increase LDL-cholesterol when compared to other plant oils but may decrease LDL-cholesterol when compared to animal fats rich in SFA. Canola/rapeseed oil may decrease LDL-cholesterol compared to olive oil, sunflower oil and sources of SFA and may also reduce body weight compared to other oils. Olive oil may decrease some inflammation markers but may not have a differential effect on LDL-cholesterol compared to other fats and oils. The effect on risk markers likely differs depending on the type/version of oil, for example, due to the presence of polyphenols, phytosterols and other minor components. Taken together, based on the available evidence, oils rich in unsaturated fat (e.g. olive oil, canola oil) are to be preferred over oils and fats rich in saturated fat (e.g. butter, tropical oils)

    Fat and fatty acids : a scoping review for Nordic Nutrition Recommendations 2023

    No full text
    Two de novo NNR2022 systematic reviews (SRs) as well as 21 qualified SRs (qSRs) were available. A literature search yielded an additional ~70 SRs, meta-analyses and biomarker papers. Diets lower in total fat are associated with reductions in body weight and blood pressure compared with diets higher in total fat in adults. Partial replacement of saturated fatty acid (SFA) with n-6 polyunsaturated fatty acid (PUFA) improves blood lipid profile, decreases the risk of cardiovascular disease (CVD), improves glucose-insulin homeostasis and may decrease the risk of total mortality. Long-chain n-3 PUFAs (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) decrease triglycerides and are associated with lower risk of CVD. Dietary PUFAs, both n-3 and n-6, may be associated with reduced risk of type 2 diabetes (T2D). There is inconclusive evidence to suggest that the type of dietary fat is associated with blood pressure, risk of hypertension or musculoskeletal health. Higher intake of total PUFA is associated with lower mortality from any cancer. Long-chain n-3 PUFA is associated with reduced risk of breast cancer, whereas biomarker levels of n-6 PUFA are associated with lower risk of any cancer. Intake of long-chain n-3 PUFA during pregnancy increases length of gestation and child birth weight and reduces the risk of preterm delivery, but there is inconclusive evidence to suggest that it may influence child neurodevelopment, growth or development of allergic disease. In studies with higher versus lower dietary cholesterol intake levels, total blood cholesterol increased or were unaffected by the dietary cholesterol, resulting in inconclusive results. Trans fatty acid (TFA), regardless of source, impairs blood lipid profile compared to unsaturated fat. In observational studies, TFA is positively associated with CVD and total mortality but whether associations differ by source is inconclusive. Ruminant TFA, as well as biomarker levels of odd-chain fatty acids, might be associated with lower risk of T2D

    Fats and oils : a scoping review for Nordic Nutrition Recommendations 2023

    No full text
    This scoping review for the Nordic Nutrition Recommendations 2023 summarizes the available evidence on fats and oils from a food level perspective. A literature search for systematic reviews (SRs) and meta-analyses was conducted in PubMed. There are few SRs and meta-analyses available that investigate the association between fats and oils (food level) and health outcomes; the majority report associations at the nutrient level (fatty acid classes). All identified SRs and meta-analyses were of low methodological quality, thus the findings and conclusions presented within this scoping review should be interpreted cautiously. Based on this limited evidence, the following results were indicated: the intake of olive oil may be associated with reduced risk of cardiovascular disease (CVD), type 2 diabetes (T2D), and total mortality in prospective cohort studies. The intake of butter was not associated with the risk of CVD but may be related to slightly lower risk of T2D and higher risk of total mortality in prospective cohort studies. For cancer, the evidence is sparse and primarily based on case-control studies. The intake of olive oil may be associated with reduced risk of cancer, whereas the intake of butter may be associated with increased risk of certain cancer types. Butter increases LDL-cholesterol when compared to virtually all other fats and oils. Palm oil may increase LDL-cholesterol when compared to oils rich in MUFA or PUFA but may not have any effect on glucose or insulin. Coconut oil may increase LDL-cholesterol when compared to other plant oils but may decrease LDL-cholesterol when compared to animal fats rich in SFA. Canola/rapeseed oil may decrease LDL-cholesterol compared to olive oil, sunflower oil and sources of SFA and may also reduce body weight compared to other oils. Olive oil may decrease some inflammation markers but may not have a differential effect on LDL-cholesterol compared to other fats and oils. The effect on risk markers likely differs depending on the type/version of oil, for example, due to the presence of polyphenols, phytosterols and other minor components. Taken together, based on the available evidence, oils rich in unsaturated fat (e.g. olive oil, canola oil) are to be preferred over oils and fats rich in saturated fat (e.g. butter, tropical oils)
    corecore