4,374 research outputs found
Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
We develop a theory to describe the reorientation phenomena in the lamellar
phase of block copolymer melt under reciprocating shear flow. We show that
similar to the steady-shear, the oscillating flow anisotropically suppresses
fluctuations and gives rise to the parallel-perpendicular orientation
transition. The experimentally observed high-frequency reverse transition is
explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR
Evidence of a Critical time in Constrained Kinetic Ising models
We study the relaxational dynamics of the one-spin facilitated Ising model
introduced by Fredrickson and Andersen. We show the existence of a critical
time which separates an initial regime in which the relaxation is exponentially
fast and aging is absent from a regime in which relaxation becomes slow and
aging effects are present. The presence of this fast exponential process and
its associated critical time is in agreement with some recent experimental
results on fragile glasses.Comment: 20 Pages + 7 Figures, Revte
Derivation of an Abelian effective model for instanton chains in 3D Yang-Mills theory
In this work, we derive a recently proposed Abelian model to describe the
interaction of correlated monopoles, center vortices, and dual fields in three
dimensional SU(2) Yang-Mills theory. Following recent polymer techniques,
special care is taken to obtain the end-to-end probability for a single
interacting center vortex, which constitutes a key ingredient to represent the
ensemble integration.Comment: 18 pages, LaTe
Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow
We generalize the earlier theory by Fredrickson [J. Rheol. v.38, 1045 (1994)]
to study the orientational behaviour of the hexagonal phase of diblock
copolymer melt subjected to steady shear flow. We use symmetry arguments to
show that the orientational ordering in the hexagonal phase is a much weaker
effect than in the lamellae. We predict the parallel orientation to be stable
at low and the perpendicular orientation at high shear rates. Our analysis
reproduces the experimental results by Tepe et al. [Macromolecules v.28, 3008
(1995)] and explains the difficulties in experimental observation of the
different orientations in the hexagonal phase.Comment: 21 pages, 6 eps figures, submitted to Physical Review
Reactions at polymer interfaces: A Monte Carlo Simulation
Reactions at a strongly segregated interface of a symmetric binary polymer
blend are investigated via Monte Carlo simulations. End functionalized
homopolymers of different species interact at the interface instantaneously and
irreversibly to form diblock copolymers. The simulations, in the framework of
the bond fluctuation model, determine the time dependence of the copolymer
production in the initial and intermediate time regime for small reactant
concentration . The results are compared to
recent theories and simulation data of a simple reaction diffusion model. For
the reactant concentration accessible in the simulation, no linear growth of
the copolymer density is found in the initial regime, and a -law is
observed in the intermediate stage.Comment: to appear in Macromolecule
Surface states in nearly modulated systems
A Landau model is used to study the phase behavior of the surface layer for
magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz
point marking the boundary between modulated and homogeneous bulk phases. The
model incorporates surface and bulk fields and includes a term in the free
energy proportional to the square of the second derivative of the order
parameter in addition to the usual term involving the square of the first
derivative. In the limit of vanishing bulk field, three distinct types of
surface ordering are possible: a wetting layer, a non-wet layer having a small
deviation from bulk order, and a different non-wet layer with a large deviation
from bulk order which decays non-monotonically as distance from the wall
increases. In particular the large deviation non-wet layer is a feature of
systems at the Lifshitz point and also those having only homogeneous bulk
phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Cutoff for the East process
The East process is a 1D kinetically constrained interacting particle system,
introduced in the physics literature in the early 90's to model liquid-glass
transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that
its mixing time on sites has order . We complement that result and show
cutoff with an -window.
The main ingredient is an analysis of the front of the process (its rightmost
zero in the setup where zeros facilitate updates to their right). One expects
the front to advance as a biased random walk, whose normal fluctuations would
imply cutoff with an -window. The law of the process behind the
front plays a crucial role: Blondel showed that it converges to an invariant
measure , on which very little is known. Here we obtain quantitative
bounds on the speed of convergence to , finding that it is exponentially
fast. We then derive that the increments of the front behave as a stationary
mixing sequence of random variables, and a Stein-method based argument of
Bolthausen ('82) implies a CLT for the location of the front, yielding the
cutoff result.
Finally, we supplement these results by a study of analogous kinetically
constrained models on trees, again establishing cutoff, yet this time with an
-window.Comment: 33 pages, 2 figure
Simple model with facilitated dynamics for granular compaction
A simple lattice model is used to study compaction in granular media. As in
real experiments, we consider a series of taps separated by large enough
waiting times. The relaxation of the density exhibits the characteristic
inverse logarithmic law. Moreover, we have been able to identify analytically
the relevant time scale, leading to a relaxation law independent of the
specific values of the parameters. Also, an expression for the asymptotic
density reached in the compaction process has been derived. The theoretical
predictions agree fairly well with the results from the Monte Carlo simulation.Comment: 15 pages, 4 figures, REVTeX file; no changes except for
single-spacing to save paper (previous version 22 pages
Steady State of microemulsions in shear flow
Steady-state properties of microemulsions in shear flow are studied in the
context of a Ginzburg-Landau free-energy approach. Explicit expressions are
given for the structure factor and the time correlation function at the one
loop level of approximation. Our results predict a four-peak pattern for the
structure factor, implying the simultaneous presence of interfaces aligned with
two different orientations.
Due to the peculiar interface structure a non-monotonous relaxation of the
time correlator is also found.Comment: 5 pages, 3 figure
Determination of complex dielectric functions of ion implanted and implanted‐annealed amorphous silicon by spectroscopic ellipsometry
Measuring with a spectroscopic ellipsometer (SE) in the 1.8–4.5 eV photon energy region we determined the complex dielectric function (ϵ = ϵ1 + iϵ2) of different kinds of amorphous silicon prepared by self‐implantation and thermal relaxation (500 °C, 3 h). These measurements show that the complex dielectric function (and thus the complex refractive index) of implanted a‐Si (i‐a‐Si) differs from that of relaxed (annealed) a‐Si (r‐a‐Si). Moreover, its ϵ differs from the ϵ of evaporated a‐Si (e‐a‐Si) found in the handbooks as ϵ for a‐Si. If we use this ϵ to evaluate SE measurements of ion implanted silicon then the fit is very poor. We deduced the optical band gap of these materials using the Davis–Mott plot based on the relation: (ϵ2E2)1/3 ∼ (E− Eg). The results are: 0.85 eV (i‐a‐Si), 1.12 eV (e‐a‐Si), 1.30 eV (r‐a‐Si). We attribute the optical change to annihilation of point defects
- …
