655 research outputs found

    The Impact of Climate Change on Agriculture and Health Sectors in Tanzania: A review

    Full text link
    The impact of climate change in Tanzania is dynamic and differs among regions as they are impacted in different ways. While other regions experience normal rainfall and temperature patterns, others have continued to experience temperature extremes, severe droughts, decline in crops production coupled with food insecurity, extreme weather episodes of heavy rainfall associated with floods, loss of lives and infectious disease outbreaks. Despite the effects of climate change being recognized in the country, awareness is limited among local people, in particular the vulnerable communities. Thus, this review aims to raise awareness by giving a broader picture of impacts of climate change on agriculture and health sector. It reveals that in many parts of Tanzania, agriculture and health sectors may continue to suffer from the effects of climate change aggregated with limited awareness among communities. It is expected, that outbreaks of infectious diseases including malaria and cholera may increase as they correlate positively with high temperatures and rainfall. As a result, health problems and deaths of people, and reduced crops production will continue. Therefore, it is recommended that, the best way to overcome climate change is to invest effectively on the irrigation agriculture; and the health sector's budget should be enough to improve health care services and prepare for outbreaks of climate change sensitive diseases. Most importantly, provision of climate change awareness to the vulnerable communities must be seriously considered. About 50 peer-reviewed articles, government and International reports published between 2000 and 2017 were reviewed

    Long-term operation of a laser frequency comb with the Habitable Zone Planet Finder

    Get PDF
    Laser frequency combs are an ideal calibration source for precision astronomical spectrographs. We report on the demonstrated long term operation of a laser frequency comb that we designed and built as the primary calibrator for the Habitable Zone Planet Finder (HPF). The core technology of the comb is based on robust, polarization maintaining fiber coupled electro-optic modulators and broadband supercontinuum generation spanning 700-1600 nm in an efficient silicon nitride waveguide. The comb is continuously maintained on and ready to use, and since May 2018 the laser frequency comb has had a total uptime of 97%

    Astrometric Methods and Instrumentation to Identify and Characterize Extrasolar Planets: A Review

    Full text link
    I present a review of astrometric techniques and instrumentation utilized to search for, detect, and characterize extra-solar planets. First, I briefly summarize the properties of the present-day sample of extrasolar planets, in connection with predictions from theoretical models of planet formation and evolution. Next, the generic approach to planet detection with astrometry is described, with significant discussion of a variety of technical, statistical, and astrophysical issues to be faced by future ground-based as well as space-borne efforts in order to achieve the required degree of measurement precision. After a brief summary of past and present efforts to detect planets via milli-arcsecond astrometry, I then discuss the planet-finding capabilities of future astrometric observatories aiming at micro-arcsecond precision. Lastly, I outline a number experiments that can be conducted by means of high-precision astrometry during the next decade, to illustrate its potential for important contributions to planetary science, in comparison with other indirect and direct methods for the detection and characterization of planetary systems.Comment: 61 pages, 8 figures, PASP, accepted (October 2005 issue

    Leptoproduction of Heavy Quarks II -- A Unified QCD Formulation of Charged and Neutral Current Processes from Fixed-target to Collider Energies

    Full text link
    A unified QCD formulation of leptoproduction of massive quarks in charged current and neutral current processes is described. This involves adopting consistent factorization and renormalization schemes which encompass both vector-boson-gluon-fusion (flavor creation) and vector-boson-massive-quark-scattering (flavor excitation) production mechanisms. It provides a framework which is valid from the threshold for producing the massive quark (where gluon-fusion is dominant) to the very high energy regime when the typical energy scale \mu is much larger than the quark mass m_Q (where the quark-scattering should be prevalent). This approach effectively resums all large logarithms of the type (alpha_s(mu) log(mu^2/m_Q^2)^n which limit the validity of existing fixed-order calculations to the region mu ~ O(m_Q). We show that the (massive) quark-scattering contribution (after subtraction of overlaps) is important in most parts of the (x, Q) plane except near the threshold region. We demonstrate that the factorization scale dependence of the structure functions calculated in this approach is substantially less than those obtained in the fixed-order calculations, as one would expect from a more consistent formulation.Comment: LaTeX format, 29 pages, 11 figures. Revised to make auto-TeX-abl

    Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 483-511, doi: 10.5194/bg-7-483-2010The present paper is the result of a workshop sponsored by the DFG Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System", the International Graduate College EUROPROX, and the Alfred Wegener Institute for Polar and Marine Research. The workshop brought together specialists on organic matter degradation and on proxy-based environmental reconstruction. The paper deals with the main theme of the workshop, understanding the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record. Special attention is paid to (A) the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules, (B) the impact of selective OM preservation on the interpretation of proxies for marine palaeoceanographic and palaeoclimatic reconstruction, and (C) past marine productivity and selective preservation in sediments. It appears that most of the factors influencing OM preservation have been identified, but many of the mechanisms by which they operate are partly, or even fragmentarily, understood. Some factors have not even been taken carefully into consideration. This incomplete understanding of OM breakdown hampers proper assessment of the present and past carbon cycle as well as the interpretation of OM based proxies and proxies affected by OM breakdown. To arrive at better proxy-based reconstructions "deformation functions" are needed, taking into account the transport and diagenesis-related molecular and atomic modifications following proxy formation. Some emerging proxies for OM degradation may shed light on such deformation functions. The use of palynomorph concentrations and selective changes in assemblage composition as models for production and preservation of OM may correct for bias due to selective degradation. Such quantitative assessment of OM degradation may lead to more accurate reconstruction of past productivity and bottom water oxygenation. Given the cost and effort associated with programs to recover sediment cores for paleoclimatological studies, as well as with generating proxy records, it would seem wise to develop a detailed sedimentological and diagenetic context for interpretation of these records. With respect to the latter, parallel acquisition of data that inform on the fidelity of the proxy signatures and reveal potential diagenetic biases would be of clear value.We acknowledge generous financial support by the DFG Research Center/Cluster of Excellence MARUM “The Ocean in the Earth System”, the International Graduate College EUROPROX and the Alfred Wegener Institute for Polar and Marine Research enabling the realisation of the “Workshop on Selective Preservation of Organic Matter: Processes and Impact on the Fossil Record” which formed the basis of this paper. GJMV acknowledges support by the German Science Foundation (DFG grant VE486/2)

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface

    Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae

    Get PDF
    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find πabs=3.82±0.2\pi_{abs} = 3.82 \pm 0.2 mas. Spectral classifications and VRIJHKT2_2M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.Comment: Several typos corrected. To appear in The Astronomical Journal, January 200
    • …
    corecore