171 research outputs found
Phosphoproteomic Analysis of Pancreatic Ductal Adenocarcinoma Cells Reveals Differential Phosphorylation of Cell Adhesion, Cell Junction and Structural Proteins
In this present work, we characterized the phosphoproteomes of pancreatic ductal adenocarcinoma (PDAC) cells and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap. We identified more than 700 phosphoproteins from each sample, and revealed differential phosphorylation of many proteins involved in cell adhesion, cell junction, and cytoskeleton. Since post-translational phosphorylation is a common and important mechanism of acute and reversible regulation of protein function in mammalian cells, an understanding of differential phosphorylation of these proteins and resulting signal transduction changes in PDAC will help in comprehending the complex dynamics of tumor invasion and metastasis in pancreatic cancer
Core-Shell Hydrogel Particles Harvest, Concentrate and Preserve Labile Low Abundance Biomarkers
Background: The blood proteome is thought to represent a rich source of biomarkers for early stage disease detection. Nevertheless, three major challenges have hindered biomarker discovery: a) candidate biomarkers exist at extremely low concentrations in blood; b) high abundance resident proteins such as albumin mask the rare biomarkers; c) biomarkers are rapidly degraded by endogenous and exogenous proteinases. Methodology and Principal Findings: Hydrogel nanoparticles created with a N-isopropylacrylamide based core (365 nm)-shell (167 nm) and functionalized with a charged based bait (acrylic acid) were studied as a technology for addressing all these biomarker discovery problems, in one step, in solution. These harvesting core-shell nanoparticles are designed to simultaneously conduct size exclusion and affinity chromatography in solution. Platelet derived growth factor (PDGF), a clinically relevant, highly labile, and very low abundance biomarker, was chosen as a model. PDGF, spiked in human serum, was completely sequestered from its carrier protein albumin, concentrated, and fully preserved, within minutes by the particles. Particle sequestered PDGF was fully protected from exogenously added tryptic degradation. When the nanoparticles were added to a 1 mL dilute solution of PDGF at non detectable levels (less than 20 picograms per mL) the concentration of the PDGF released from the polymeric matrix of the particles increased within the detection range of ELISA and mass spectrometry. Beyond PDGF, the sequestration and protection from degradation for a series of additional very low abundance and very labile cytokines were verified. Conclusions and Significance: We envision the application of harvesting core-shell nanoparticles to whole blood for concentration and immediate preservation of low abundance and labile analytes at the time of venipuncture. © 2009 Longo et al
Application of analyte harvesting nanoparticle technology to the measurement of urinary HGH in healthy individuals
Urine represents a valuable biofluid for noninvasive measurement of Human Growth Hormone (HGH) secretion. Unfortunately, currently available commercial HGH immunoassays do not achieve the sensitivity needed for urinary HGH measurement in the low picogram per milliliter range, the expected normal concentration range of HGH in urine. A nanotechnology based sample preprocessing step was used to extract and concentrate HGH in urine so that urinary HGH could be measured with a clinical grade standard immunoassay designed for serum (Immulite 1000, Siemens). We applied the nanoparticle enhanced immunoassay to evaluate the baseline value of urinary HGH in a population of healthy young adults (age 18-30, N=33, median 21, M: F=39%:61%, with no reported medical therapies). Nanoparticle sample preprocessing effectively improved the lower limit of detection of the Immulite HGH assay by more than 50 fold, shifting the linear range of the assay to encompass the expected value of urinary HGH. The full process between run and within run CV% was 7.9 and 9.0%, respectively. On 33 healthy volunteers, the 95% reference values for hGH in spot urine normalized to specific gravity were 0.64 - 16.85 pg/mL (0.05-5.82 ng/g creatinine). Nanoparticle preprocessing constitutes a reliable means of measuring urinary HGH with a clinical grade immunoassay, now establishing a normal baseline value for HGH in urine. Nanoparticles can be used to study the kinetics of HGH excretion in urine, and the factors that influence urinary HGH secretion and HGH isoform proportions
Circulating Autoantibodies to Phosphorylated α-Enolase are a Hallmark of Pancreatic Cancer.
Recommended from our members
Comparative evaluation of Olink Explore 3072 and mass spectrometry with peptide fractionation for plasma proteomics
Plasma proteomics technologies are advancing rapidly, offering new opportunities for biomarker discovery and precision medicine. Direct comparisons of available technologies are needed to understand how platform selection affects downstream findings. We compared the performance of a peptide fractionation-based mass spectrometry method (HiRIEF LC-MS/MS) and the Olink Explore 3072 proximity extension assays on 88 plasma samples, analyzing 1129 proteins with both methods. The platforms exhibited complementary proteome coverage, high precision, and concordance in estimating sex differences in protein levels. Quantitative agreement between platforms was moderate (median correlation 0.59, interquartile range 0.33-0.75), mainly influenced by technical factors. Finally, we present a publicly available tool for peptide-level analysis of platform agreement and demonstrate its utility in clarifying cross-platform discrepancies in protein and proteoform measurements. Our findings provide insights for platform selection and study design, and highlight the value of combining mass spectrometry and affinity-based approaches for more comprehensive and reliable plasma proteome profiling
Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer's disease
Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders. In this study, we selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. We examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA. Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results (r > 0.7) and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, we demonstrate the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders
Concentration and preservation of very low abundance biomarkers in urine, such as human growth hormone (hGH), by Cibacron Blue F3G-A loaded hydrogel particles
Investigation of the Ovarian and Prostate Cancer Peptidome for Candidate Early Detection Markers Using a Novel Nanoparticle Biomarker Capture Technology
- …
