598 research outputs found

    Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties

    Get PDF
    We use aMC@NLO to study the production of four charged leptons at the LHC, performing parton showers with both HERWIG and Pythia6. Our underlying matrix element calculation features the full next-to-leading order O(αS)O(\alpha_S) result and the O(αS2)O(\alpha_S^2) contribution of the gggg channel, and it includes all off-shell, spin-correlation, virtual-photon-exchange, and interference effects. We present several key distributions together with the corresponding theoretical uncertainties. These are obtained through a process-independent technique that allows aMC@NLO to compute scale and PDF uncertainties in a fully automated way and at no extra CPU-time costComment: 24 pages, 6 figure

    A statistically principled approach to histogram segmentation

    Get PDF
    This paper outlines a statistically principled approach to clustering one dimensional data. Given a dataset, the idea is to fit a density function that is as simple as possible, but still compatible with the data. Simplicity is measured in terms of a standard smoothness functional. Data-compatibility is given a precise meaning in terms of distribution-free statistics based on the empirical distribution function. The main advantages of this approach are that (i) it involves a single decision-parameter which has a clear statistical interpretation, and (ii) there is no need to make a priori assumptions about the number or shape of the clusters

    NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM

    Get PDF
    We present a next-to-leading order calculation of Higgs boson production plus one and two jets via gluon fusion interfaced to shower Monte Carlo programs, implemented according to the POWHEG method. For this implementation we have used a new interface of the POWHEG BOX with MadGraph4, that generates the codes for generic Born and real processes automatically. The virtual corrections have been taken from the MCFM code. We carry out a simple phenomenological study of our generators, comparing them among each other and with fixed next-to-leading order results.Comment: 27 pages, 21 figure

    Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO

    Get PDF
    We present results for the QCD next-to-leading order (NLO) calculation of single-top t-channel production in the 4-flavour scheme, interfaced to Parton Shower (PS) Monte Carlo programs according to the POWHEG and MC@NLO methods. Comparisons between the two methods, as well as with the corresponding process in the 5-flavour scheme are presented. For the first time results for typical kinematic distributions of the spectator-b jet are presented in an NLO+PS approach.Comment: 16+1 pages, 8 figures, matches version accepted for publication in JHE

    Charge asymmetries of top quarks: a window to new physics at hadron colliders

    Get PDF
    With the next start of LHC, a huge production of top quarks is expected. There are several models that predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range. A peak in the differential cross section could reveal the existence of such a resonance, but this is experimentally challenging, because it requires selecting data samples where top and antitop quarks are highly boosted. Nonetheless, the production of such resonances might generate a sizable charge asymmetry of top versus antitop quarks. We consider a toy model with general flavour independent couplings of the resonance to quarks, of both vector and axial-vector kind. The charge asymmetry turns out to be a more powerful observable to detect new physics than the differential cross section, because its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses

    Matching NLO QCD computations with PYTHIA using MC@NLO

    Get PDF
    We present the matching between a next-to-leading order computation in QCD and the PYTHIA parton shower Monte Carlo, according to the MC@NLO formalism. We study the case of initial-state radiation, and consider in particular single vector boson hadroproduction.Comment: 16 pages, 10 figures. Several comments and two figures have been adde

    Automation of one-loop QCD corrections

    Get PDF
    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.Comment: 64 pages, 12 figures. Corrected the value of m_Z in table 1. In table 2, corrected the values of cross sections in a.4 and a.5 (previously computed with mu=mtop/2 rather than mu=mtop/4). In table 2, corrected the values of NLO cross sections in b.3, b.6, c.3, and e.7 (the symmetry factor for a few virtual channels was incorrect). In sect. A.4.3, the labeling of the four-momenta was incorrec

    Market access to new anticancer medicines for children and adolescents with cancer in Europe

    Full text link
    BACKGROUND AND AIMS: There is an alarming delay in Europe for anticancer medicines becoming accessible for children. Following a paediatric European Union marketing authorisation, national Health Technology Assessment (HTA) agencies evaluate effectiveness, and safety of medicines to support decision on their cost and reimbursement. This study (a SIOPE Access to Medicines project) aimed to evaluate how these HTA evaluations take place for anticancer medicines indicated for paediatric use in Europe and to explore where the delays for market access originate. METHODS: We obtained HTA reports from the public domain for nine European countries for blinatumomab, dinutuximab beta and tisagenlecleucel. We evaluated the time elapsed between marketing authorisation for a paediatric indication and a national HTA decision and the nature of the decision. RESULTS: Out of 23 HTA decisions (four countries without blinatumomab report), 18 were positive, two with restrictions, three negative. For blinatumomab, tisagenlecleucel and dinutuximab beta, the median time to an HTA decision after regulatory approval for paediatric use was 353 days (range 193-751), 141 days (range 77-517) and 515 days (range 0-780), respectively, with variability between countries. Dinutuximab beta and tisagenlecleucel were first introduced in children, but did not result in shorter time to HTA decision. For blinatumomab, marketing authorisation followed 1008 days after the indication in adults, with HTA applications submitted a median of 167 days later, and a recommendation after 145 days. CONCLUSIONS: This study reveals ample variability in HTA decision making in nine European Union countries. Collaboration and alignment of required evidence is needed to facilitate robust scientific HTA assessments, also considering methodological challenges in paediatric oncology

    Photon Radiation with MadDipole

    Full text link
    We present the automation of a subtraction method for photon radiation using the dipole formalism within the MadGraph framework. The subtraction terms are implemented both in dimensional regularization and mass regularization for massless and massive cases and non-collinear-safe observables are accounted for.Comment: 23 pages, 2 figures, minor additions, references added, version published in JHE
    • …
    corecore