PUBLISHED FOR SISSA BY €) SPRINGER

)

RECEIVED: February 24, 2010
REVISED: April 12, 2010
ACCEPTED: April 18, 2010
PUBLISHED: April 27, 2010

Matching NLO QCD computations with PYTHIA
using MC@GNLO

Paolo Torrielli® and Stefano Frixione®!

“]TPP, EPFL,
CH-1015 Lausanne, Switzerland

®PH Department, TH Unit, CERN,
CH-1211 Geneva 23, Switzerland

FE-mail: Paolo.Torrielli@epfl.ch, Stefano.Frixione@cern.ch
ABSTRACT: We present the matching between a next-to-leading order computation in QCD
and the PYTHIA parton shower Monte Carlo, according to the MCQNLO formalism. We
study the case of initial-state radiation, and consider in particular single vector boson
hadroproduction.

KeEYwoORrDS: NLO Computations, Hadronic Colliders, QCD

ARX1v EPRINT: 1002.4293

1On leave of absence from INFN, Sez. di Genova, Italy.

OPEN ACCESS doi:10.1007/JHEP04(2010)110


mailto:Paolo.Torrielli@epfl.ch
mailto:Stefano.Frixione@cern.ch
http://arxiv.org/abs/1002.4293
http://dx.doi.org/10.1007/JHEP04(2010)110

Contents

1 Introduction 1
2 MCQ@NLO 2
2.1 NLO parton-level cross section 2
2.2 Event projection with PYTHIA 4
2.3 MC subtraction terms 6
2.4 MCQNLO short-distance cross sections 8
3 Results 11
4 Conclusions 16

1 Introduction

Perturbation theory offers a systematic way to improve theoretical predictions for any given
infrared-safe observable. Depending on whether the expansion parameter in the series is
Qg, or is ag times a logarithm or a logarithm squared of some function of the kinematics
of the hard process, one obtains a fixed-order result or a resummed result, respectively.
Cross sections expanded up to a certain order in ag and those resummed are relevant to
complementary kinematic regions of the phase-space. It is therefore convenient to combine
the features of these two expansions, by defining a matched cross section which is equal to
the former or to the latter in the appropriate phase-space region.

Fixed-order results are now generally available at the next-to-leading order (NLO),

which corresponds to including in the cross section the coefficients of terms of order o%

(the leading order or Born level) and of order o™l Thanks to the recent and rapid
progress in the automated treatment of both the real and the virtual contributions to
NLO computations, it is realistic to assume that phenomenological results at this accuracy
will become available in the next few years for all of the reactions of interest to the LHC
physics programme. The situation is much less encouraging for fixed-order cross sections at
O(a%?) (or NNLO), where only a handful of results are available, for very small final-state
multiplicities.

As far as resummed results are concerned, it is in general understood how to achieve
a next-to-leading logarithmic (NLL) accuracy, which is equivalent to including terms pro-
portional to af log"™ Q and to al log" =1 Q, with k = 1,2 depending on the nature of
Q; some results are also known to next-to-next-to-leading logarithmic accuracy (NNLL).
Unfortunately, resummed computations are in general technically complicated, observable-
dependent, and error-prone; although for some observable classes a semi-automated al-
gorithm (CAESAR [1]) is available, the overall situation is far less satisfactory than for



NLO computations. For this reason, a very appealing alternative is that provided by Parton
Shower Monte Carlos (PSMCs). Although formally PSMCs are equivalent to a LL-accurate
resummation (which may become NLL in some corners of the phase space, for some PSMCs
and subject to certain restrictions), in practice they are known to do much better than that,
as comparisons with data and with analytically-resummed results clearly show. Further-
more, PSMCs are fully flexible, give one the possibility of including hadronization models
in a consistent manner, and are the workhorses of experimental collaborations, thanks to
their capabilities of simulating fully-realistic final-state configurations that can undergo
detector simulations.

As is well known, the approximations that form the core of PSMCs severely limit their
predictive power in those phase-space regions (corresponding to multi-jet configurations)
which are of interest for most of new-physics searches at colliders. These limitations can be
alleviated by viewing PSMC predictions as resummed results, to be included with the NLO
corrections to the relevant production processes into a matched cross section. The definition
of a formalism for matching NLO computations and MC simulations has attracted a consid-
erable amount of attention. There are now several proposals, but only two of them, namely
MC@NLO [2] or POWHEG [3], have made it to the stage of actually implementing several
hadroproduction processes, and of being routinely used by experimental collaborations.

The MCQNLO formalism requires the computation of the cross section predicted by
the PSMC at O(a%™). Because of the structure of PSMCs, the non-trivial information of
this computation is actually process-independent, and is contained in the definitions of the
parton branchings; the process-dependent part is entirely factorized in the Born matrix
element. Thus, one essentially has to perform one set of computations (since typically
initial- and final-state branchings are treated differently by the Monte Carlos) per PSMC, in
order to be able to match an NLO computation with a parton shower simulation according
to the MCQNLO approach. So far, these computations have been carried out for the case
of HERWIG (see refs. [2, 4, 5]) and, more recently, for HERWIG++ [6]. In this paper, we
present the first results relevant to the matching with PYTHIA 6.4. We limit ourselves to
considering the case of initial-state branchings, and present some sample results for the
Drell-Yan process.

This paper is organized as follows. In section 2 we describe the various steps necessary
for an MC@QNLO matching with PYTHIA, from the definition of the underlying parton-level
NLO cross section to the MCQNLO short-distance cross sections used for the generation of
hard-subprocess events, to be showered by PYTHIA. We present sample results in section 3,
and we give our conclusions in section 4.

2 MCQNLO

2.1 NLO parton-level cross section

The starting point for the construction of MCQNLO is that of writing the short-distance
parton-level cross section according to the subtraction formalism of refs. [7, 8] (which we
shall call FKS subtraction henceforth). The default procedure in FKS is that of treating
simultaneously (i.e. in one contribution to the partonic cross section) the two initial-state



collinear singularities, due to one given final-state parton being collinear to the initial-state
parton coming from the left or from the right. On the other hand, in FKS one can also treat
these two singularities independently, by defining two separate contributions to the short-
distance cross section, each of which corresponds to one of the initial-state singularities;
this procedure is explained in detail in ref. [9]. As we shall discuss in the following, when an
NLO computation is matched to PYTHIA according to the MC@QNLO formalism, it turns
out to be convenient to adopt the latter strategy (at variance with the case of HERWIG,
where the simultaneous subtraction suffices).

We shall assign the momenta entering the (real-emission) partonic subprocesses as

follows:
a(p1) +b(p2) — V(k1) + c(k2) (2.1)

with V' representing a W or a Z boson, and a, b, and ¢ being QCD partons; Born-like
processes are simply obtained from eq. (2.1) by removing c(k3) from the r.h.s.. Only soft
and initial-state collinear singularities are present in the processes of eq. (2.1). Hence, the
S functions required for a separate treatment of the collinear singularities are two and shall
be denoted by

Sy, S_, (2.2)
with the following properties:

S+ —|— S, — 1 5 (23)
lim & =1, (2.4)
ka2 |lp1

lim §_ =1, (2.5)
ka||p2

lim S # 0. (2.6)
kgHO

The expectation value for any observable O will then be written as

where (see eqs. (4.14)—(4.16) of ref. [2])

asty) 1 (ds®  gsl
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As can be seen in ref. [2], the ¥ terms in equation above are defined as the partonic

short-distance cross sections, times the luminosity factors.



In writing eq. (2.8), we have split (using the S functions) the Born (Eal;)) and soft-

virtual (E((l‘zv)) contributions into two terms, and have associated them with the correspond-
ing real-emission contributions (see refs. [5, 9]). We have also used the collinear limits of
egs. (2.4) and (2.5), that imply that the S functions associated with the collinear countert-
(c£)
b

erms are trivial. Finally, note that the collinear remainders 3,

by the S functions.
Equation (2.8) must be further manipulated in order to use it in MC@NLO; in partic-

need not be multiplied

ular, one has to apply the so-called event projection which allows one to define a unique
kinematic configuration associated with all counterevents (for a given real-emission config-
uration) — see section A.4 of ref. [2]. As discussed in that paper, although event projection
is largely arbitrary, in the context of MCQNLO it turns out to be convenient to derive it
from the behaviour of the Monte Carlo one interfaces to. We shall therefore discuss in the
next subsection the behaviour of PYTHIA relevant to this issue.

2.2 Event projection with PYTHIA

The way in which PYTHIA deals with the simulation of V' production is the following [10,
11]. First, the hard process is generated. This implies the generation of the two Bjorken
z’s entering such a process, which we shall denote by (; and (s for the parton coming from
the left and from the right respectively. The partonic c.m. energy squared is

50 = (1295, (2.9)

with S the collider energy squared. In the case of single-V production, sg = m%/, with
my the mass of V' (or its virtuality if lepton pair production is considered), but eq. (2.9)
is obviously valid regardless of the production process. PYTHIA then begins the showers.
Choosing on statistical basis which leg emits “first” (such an emission is the only one that
matters as far as MC@QNLO is concerned), the shower variables are related to the momenta
given in eq. (2.1) as follows:

S0
_ , 2.10
- (p1 + p2)? ( )
ti = (pi — ka2)?, (2.11)

with ¢ = 1,2 for the emissions from the parton coming from the left and from the right re-
spectively. The branching generated with egs. (2.10) and (2.11) is such that the Bjorken z’s
associated with the initial-state partons of eq. (2.1) (which we shall denote by z1 and z,) are

z1=C/z, 2= (2.12)

for an emission from leg 1, and

71 =0, 2=/ (2.13)

for an emission from leg 2. In the branching, the c.m. energy of the Born-level subprocess
is conserved (which, in the present case, is equivalent to the requirement that the virtuality
of V be a constant), and thus

s = (p1+p2)° = 21225 = s0/z. (2.14)



Z,= C1

Figure 1. Assignments of momentum fractions in the case of initial-state branchings as done in
PYTHIA. Branchings from legs 1 and 2 are denoted in MC@QNLO by + and — respectively. The
blob represents the final state at the Born level.

Z2:C2

An easy way to achieve this is that of imposing that the Bjorken z’s of the Born-level
subprocesses, (;, be separately conserved.

As shown in ref. [2], the event-projection procedure can be formally determined by
constructing two “observables” that are conserved in the branching process. According to
what has been discussed above, a possible choice is:

O1 = (1(295, (2.15)
1o G
02 = ,log . (2.16)

It is worth noting that while eq. (2.15) is the same as in HERWIG, eq. (2.16) does not
coincide with either of the HERWIG choices considered in ref. [2]; the implication of this
fact is that we obtain two different event projections, depending on whether it is leg 1 or 2
that emits. We stress that egs. (2.15) and (2.16), and the resulting manipulations we are
now going to describe, do not depend on the nature of the Born-level final state (a V' boson
rather than — say — a three-jet configuration), owing to the fact that PYTHIA adopts
the so-called s-approach [10] when doing initial-state branchings for all hadroproduction
processes. In the context of the s-approach, the invariant mass (/sg) of the final-state
system at the Born level is kept constant during the branching. This allows one to formally
replace V' with the set of final-state particles at the Born level, and k; with the sum of
their four momenta, which does not entail any changes to egs. (2.9)—(2.14), from which
we ultimately derive egs. (2.15) and (2.16). The procedure described here is thus fully
general, and is not restricted to V-boson production. We recall that event projection is
a way to re-write the soft and collinear counterterms in a pure-NLO computation, so as
all counterterms associated with a given S contribution at the real-emission level (in the
present case, S;dX() or S_dx())) have the same kinematics. In order to achieve this,
it turns out to be convenient to define the counterterm kinematics starting from a fixed
real-emission kinematics. This situation is depicted in figure 2 for soft counterterms (the
case of collinear counterterms is essentially identical, the only differences being in the
assignments of the momentum fractions of the incoming partons, which we shall specify in
what follows). Since the event projections we define here are ultimately motivated by the
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Figure 2. Assignments of momentum fractions according to the event-projection procedure, for
the soft configurations. See the text for details.

branching strategy of PYTHIA, the procedure of figure 2 is by construction the inverse of
that depicted in figure 1. We shall return to this point in section 2.4.

In order to actually obtain event projections, we use the master equations (A.36) and
(A.37) of ref. [2]. For an emission from leg 1, these equations read in our case

01(2(21,22,¢2)) = 01(1 ($1+,$2+,¢ )), (217)
O2(2(z1, 22, ¢2)) = O2(1s(w ﬁ, ;JZa (S))), (2.18)
and their analogues for the collinear case (where one formally replaces s with ¢+ in the
r.h.s. of egs. (2.17) and (2.18)). Note that, having treated separately the two collinear

singularities in the NLO cross section, the case ¢c— need not be considered when studying
branching from leg 1). We find:

xg? =zz, :céi =2, (2.19)
2 =2z, o = o) (2.20)

For an emission from leg 2, we find instead

(s) _ (s)

T =21, Ty =229, 21
A7 =af) o) =af) /e,

/\/‘\/‘\

)
2.22)
At this point, following what was done in section 4.4 of ref. [2], one uses egs. (2.19)
and (2.20) to perform the event projection transformation of (O),, and egs. (2.21)
and (2.22) to deal with (O) . Once event projection has been achieved, the MCQNLO

short distance cross section can be defined by including the MC subtraction terms. We
shall do this in the next subsection.

2.3 MC subtraction terms
At the NLO in ag, the cross section resulting from PYTHIA is

= do™)

MC

+do ™)

MC

do , (2.23)

MC




where the two terms on the r.h.s. account for emissions from leg 1 and 2 respectively. They

read:
a0 = Ydaday dol PG| TRD @G (@), 2
abc
ZdCldCz d%b (C1P1,C2P2)dt; dz ( )FSD (C) ) (Gaf2). (2.25)
abc

Following what was done in section A.5 of ref. [2], we can manipulate the equations above
to render them suitable for an integration together with the NLO parton-level cross section.
First of all, one notes that the following identifications are valid owing to the construction
of event projections:

G = 901+, G2 = 90%27 (2.26)
in eq. (2.24), and
G=2Y, G=ay), (2.27)
in eq. (2.25). We can therefore perform a change of integration variables:
do®| =3 dudzaz)| | (2.28)
MC b MC
with
s _ 106 g FU (22 2 1) (2401 4 ) (2.29)
® lye 2z 9(z1,22) (ac : (x2+ MC '
(s) .(s)
-) 10(zy 2, @57) (1) (Hz), (s) (-)
dx = ! d 2.
ab MO P 8(21,22) ( )f ($27/Z) Oab MO ( 30)
and
dogy) 805 b)) ® (2 Py, )
i => iy PO (217 Py Po)Oy (2.31)
MC c
dog) | _ 3 ST pO) () MO (2 P, 2§ Py)© (2.32)
dpo N m%/fg cb b 2P ’
MC c
Here, we have introduced the rescaled virtualities
t; = —t;/m} . (2.33)

Furthermore, we have explicitly included the factors Oy, which are related to the choice
of the maximum virtuality allowed during shower evolution. We have e.g.

1-3
’ti‘ < m%/ — 04 = @(y - 1 $> 5 (2'34)
-
with y being the relevant angular variable associated with the FKS parton in the FKS
subtraction (here the cosine of the angle between ko and p; for emissions from leg i), and
1 — x the (normalized) energy of the FKS parton. In the case of PYTHIA, at variance with
HERWIG, z = z.



2.4 MCQNLO short-distance cross sections

At this point, we have all the ingredients needed to generate hard-subprocess events ac-
cording to the MCQNLO formalism, which will be subsequently showered by PYTHIA.
Recalling that we denote by E(a) the contributions X(® to the NLO parton-level cross
sections after event projection, event generation will be performed following the procedure
outlined in section 4.5 of ref. [2] (see also section 3 of ref. [5]), using the following integrals:

" SO ant
Iy dz1dzod S , 2.35
Z / 1dz ¢2< + ¢ i ) (2.35)
MC
(f) (£)
) / s =
I dz1dzod - S
E 1dzod + ¢ do

dE(Ci)

(0) (sv) (c£)
Sy [ d¥ X, dx,,
TR B g + 2 . (2.36)
Iy \ doy d¢1 15 d¢1d96 .  dgyda o
We remind the reader that all integrals defined in these equations are separately finite,
and that

oror = IS + 157 + 157 + 1) (2.37)

is an exact equation (with oo the fully-inclusive NLO rate).

Although egs. (2.35) and (2.36) solve the problem of the generation of hard-subprocess
events, a further simplification is possible. We start by considering the integrals Iéﬂi),
that are used to generate H events. These two integrals have to be computed separately.
However, one observes that, for a given choice of (21, 22, ¢2), the kinematics associated with
these two contributions are actually identical, and the integrals can therefore be computed
together. This is equivalent to using the following integral for the generation of H events:

Iy =159 + 1) Z / dzlengbg( o ) (2.38)

The first term in the integrand has been simplified thanks to eq. (2.3). For the computation

)

of the second term in the integrand we stress that, as eq. (2.38) explicitly indicates, z;
are the integration variables. Therefore, when we evaluate egs. (2.31) and (2.32), the

variables xijt) have to be computed according to egs. (2.19) and (2.21). From the physical

)

viewpoint, this implies that the two Born matrix elements appearing implicitly in E(
are evaluated in two different kinematics configurations, that eventually result after the
first branching in the same real-emission kinematics (21, 22, ¢2). This situation is precisely
the one depicted in figure 2.

A simplification analogous to that of eq. (2.38) is also possible in the case of S events, al-
though the argument is slightly more involved. If one fixes (21, 22, ¢2) (i.e., the real-emission
kinematics), the kinematic configurations associated with Iéﬂ and Iéf) in eq. (2.36) are
different, owing to the fact that the two integrals are computed using different event pro-

)

jections. Formally, one can introduce two mappings, pLt )S and P[EH_)S, representing these



event projections; for a given real-emission kinematic configuration 2, the two Born-like

configurations associated with Iéﬂ and Iéf) can be denoted by

=Ps2, 17 =Pfs2 (2:39)

respectively; 17 and 1~ are the hard configurations to be showered by PYTHIA. The P(i)

mappings are pictorially represented in figure 2 by the two thick arrows, with 2, 17, and
1~ the configurations depicted in the upper part, lower left corner, and lower right corner
of that figure respectively. On the other hand, one can fix a Born-like configuration 1 and,
using the inverse of the maps Péﬂi_))g (which we denote by Péj_[?H), work out the real-emission

(=),

configurations to be used in the computation of the integrand of Ig

T = Péi)H 1, 2= g(;)H 1. (2.40)
()

As we have already stressed, although there is an ample freedom in choosing Py, it is
best to adopt a form motivated by what the PSMC does when branching. In practice,

it is therefore convenient first to obtain Péi)H from the PSMC, and then (by inverting

them) Pﬂ(fi)g. In the case of PYTHIA, Péi)H amount to performing a boost of the Born-
level four momenta in the transverse direction, to balance the transverse momentum of
the parton produced in the branching (c(kz2) in eq. (2.1)), followed by a boost in the
longitudinal direction, to e.g. the lab frame. The information on the latter is equivalent
to the assignments of the momentum fractions of the incoming particles. The prescription
for the transverse boost given above is obviously trivial in the case of V' production (since
k17 = —kar), but can be applied to final states with arbitrary multiplicity. Thus, what
done here is also valid for final states more complicated than single V.

The two procedures related to eq. (2.39) and (2.40) are equivalent, since the integrals
are performed over the whole phase space (possibly subject to kinematic restrictions, which
are however identical in the two cases). Equation (2.40) corresponds to the situation
depicted in figure 1, except for the seemingly different assignments of the momentum
fractions of the incoming particles. These differences are however immaterial, since such
fractions are simply integration variables which can be manipulated and renamed at will.
We shall now proceed to perform such manipulations, starting from a change of variables
in eq. (2.36)

(s1.22.00) — (2028 08). (2.41)

Furthermore, consistently with eq. (2.40), the integrands have to be computed with the
suitable kinematic configurations, 2% or 27. We can take these two operations into account
by the formal replacements

8(21, 22)

(@) () ot .(5)
E ( ( )) B Eab (2 (1‘ i)) = s s
S v YO

(@) )
S (2(z:(2)))). (2.42)
It is easy to realize that, in the case of the Born, soft-virtual, and soft counterterms
contributions, we have by construction

~

5% =2, (2.43)



since for these terms the jacobian appearing in eq. (2.42) exactly compensates the one
in the definition of the Eécg) terms, see eq. (4.18) of [2]. In general, this is not true for
contributions with a purely collinear structure (such as the collinear counterterms to the

real-emission matrix elements). Equations (2.41), (2.42), and (2.43) allow us to rewrite

Su(as® astN o asier)
+ w4 @ + @ . 2.44
Il ( dqbl d¢1 Ii dgbldac ot ( )

At this point, the two integrals in eq. (2.44) correspond by construction to the same Born-

5 S(3)
(+) (s) %, dx,,
9= 3 [asladloss | -5t
d¢2 . dgo .

asl)
d¢1 dx

ev

like kinematic configuration (to be showered by PYTHIA), and can therefore be integrated
together. It is thus convenient to rename the integration variables

(@28, 63) — (C1.G202), (2.45)

and use
=1 +10) (2.46)

for the generation of S events. One observes that in the integrand of eq. (2.46) there will

Z =) dzg’) 1 f(asl) +dzf;j’> 247
d¢1 dpr | T\ dén der |’ '

where we have made use of eq. (2.3). The same kind of simplification will occur in the sum

be a term

of the two soft counterterms. As far as the collinear counterterms are concerned, we stress
that the Si terms that multiply them are equal to one (by construction of the S functions
— see egs. (2.4) and (2.5)). We arrive therefore at the following form:

ds &)
IS—Z/d<1d<2d¢2[ |+ X

1 (as® +dzg§”> . 1 S aster)
Iy \ doq doy dprdx .

1L:|:

)

MC
ast)
A, da

)] . (248)

Equations (2.38) and (2.48) are our final expressions, used for the generation of H and S
events respectively. The net result of the various manipulations carried out in this section
is that it is still possible to treat simultaneously the two initial-state collinear singularities,
as was the case when matching with HERWIG. We point out that the fact that eqs. (2.38)
and (2.48) do not depend upon the S functions is not a property of V-boson production, but
applies as well to all processes whose Born-level final-state particles are all colour singlets.!
In fact, for this independence of S functions to occur, we only need eq. (2.3) to hold, which
is true in the cases just mentioned (see ref. [9] for further details on the construction of S

Tt is also possible, but not mandatory, to treat in this way processes in which all strongly-interacting
final-state particles are massive, as e.g. in ¢t production. See ref. [4] for an explicit example.

,10,



functions). Clearly, in order to make use of eq. (2.3), S; and S_ need be computed for the
same kinematic configuration. This is in fact what happens, in spite of the fact that in the
intermediate steps of the event-projection procedure we had to treat separately the + and
— contributions. For H events this is trivially true by construction — both Iéﬂi) in eq. (2.35)
are associated with the kinematic configuration denoted by 2 in eq. (2.39) (i.e. the upper
part of figure 2). On the other hand, the short-distance cross sections for S events we started
from, eq. (2.36), are associated with two different kinematic configurations, denoted by 1+
in eq. (2.39) (i.e. the lower part of figure 2). Thanks to the procedure described above,
we have manipulated eq. (2.36) precisely to be able to associate the two + contributions
with the same kinematic configuration, denoted by 1 in eq. (2.40) (i.e. the upper part of
figure 1). Owing to the properties of event projections that we have discussed above, the
whole procedure can obviously be carried out for any final-state multiplicity, with 2 and 1
formally replaced by the real-emission and Born-level configurations respectively. Finally,
we stress that the manipulations performed here will also be valid in the case of strongly-
interacting particles in the final state. The only difference is that, in such a case, eq. (2.3)
will not hold any longer, and therefore the quantity S; + S_ will appear in egs. (2.38)
and (2.48) as a factor multiplying the real-emission, soft counterterms, soft-virtual, and
Born contributions (on the other hand, the purely collinear terms will be unchanged, owing
to the fact that egs. (2.4) and (2.5) hold regardless of the nature of the final state). Clearly,
the contributions due to branchings of Born-level final-state strongly-interacting particles
will be given by short-distance cross sections analogous to those of egs. (2.38) and (2.48)
(see e.g. section 3 of ref. [5]). The computation of such contributions is beyond the scope
of the present work, and we postpone it to a future publication.

We conclude this section by stressing that, due to the form of the shower variables used
by PYTHIA, the soft limit of the sum of the MC subtraction terms coincides with that of
the real-emission matrix elements, which was not the case for HERWIG. This implies that
here we can set G = 1, where G is the function introduced in section A.5 of ref. [2] — we
refer the reader to that paper for a discussion on this issue.

3 Results

In this section, we present sample results relevant to W production in pp collisions at
V'S =14 TeV. Our aim is not that of performing a phenomenological study, but rather that
of presenting a few control plots that show that the matching of the NLO results for single
vector boson production with PYTHIA according to the MCQNLO formalism works as we
expect. This is non trivial, given the differences between HERWIG and PYTHIA, which
in turn result in different short-distance MCQNLO cross sections, as discussed previously.
We set mpyy = 80.4 GeV, I'yy = 2.14 GeV, and use CTEQG6.6 [12] PDFs. Our default scale
choices are p1y = i = my, where my is the transverse mass of the W. When reconstructing
jets, we adopt the kp-jet-finding algorithm of ref. [13], with Y., = (10 GeV)2.

In each of the plots we present in figures 3-5, we display three histograms. The
solid (black) histograms are the results of MC@QNLO with PYTHIA (which we shall call
MC@NLO/PY) i.e. what has been computed in this paper. The dotted (red) histograms
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Figure 3. Solid (black): MC@QNLO/PY. Dotted (red): MCQNLO/HW. Dashed (blue): PYTHIA
standalone (rescaled), without matrix element corrections. Left pane: pr of the W boson. Right
pane: pr of the hardest jet of the event. The insets show the fractional scale dependence of
MC@NLO/PY, computed as described in the text.

are the results of MCQNLO with HERWIG (which we shall call MCQNLO/HW). Finally,
the dashed (blue) histograms are the results obtained with PYTHIA standalone. When
using PYTHIA for showering hard events, we set MSTP(81)=0 and MSTP(91)=0, which
corresponds to switching off multiple interactions and primordial k, respectively. We switch
off matrix element corrections by setting MSTP(68)=0, which also forces the maximum
virtuality in the shower to be equal to the vector boson mass, when standalone generation is
performed. On the other hand, hard subprocess events generated by MCQNLO/PY are given
to PYTHIA in the standard Les Houches format [14]; we set PARP(67)=1 and SCALUP=my
to have the same maximum scale in the shower as in the standalone generation. In order
to facilitate the visual comparisons between MC@QNLO/PY and PYTHIA, the results of
the latter are rescaled (by different factors, depending on the observables considered).
As has already been discussed at length in the literature, we expect MCQNLO to be
identical in shape to the PSMC results in the regions of the phase space dominated by
those large logarithms the PSMC is able to resum; this is the motivation for comparing
MC@NLO/PY with PYTHIA standalone. Also, we expect MC@QNLO to coincide, in shape
and normalization, with the NLO results in the regions where hard emissions are dominant.
Given that it has already been shown in the past that this is the case for MCQNLO/HW,
here we compare MCQNLO/PY directly with MCQNLO/HW, rather than with the pure
NLO results, since this will also give us the opportunity to observe the different behaviours
of the two underlying PSMCs in the soft/collinear regions. As far as negative weights are
concerned, for W production at the LHC their fraction with MC@NLO/PY is about 0.6%,
while in the case of MCQNLO/HW is about 8%. Since the phase-space parametrizations
used in the two codes are identical, this large difference is essentially due to the different
choices of shower variables made by the two PSMCs.

In figure 3 we consider the transverse momentum distributions of the W boson (left
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pane), and of the hardest jet of the event (right pane). These distributions are interesting
since in the large-pr region they are dominated by hard emissions, whereas in the small-p,
one there are logarithmically-enhanced terms that need be resummed (the pure NLO
results diverge there). The comparisons among the three results for the two distributions
follow the same pattern, as we expect. At small p;’s, the shapes of MCQNLO/PY and
of PYTHIA are identical. To show this clearly, the latter results have been rescaled so as
their first bins coincide with those resulting from MC@NLO/PY. On the other hand, the
MC@NLO/PY and MC@GNLO/HW results are quite different in this p, region, owing to the
different treatment of soft and collinear emissions by the two PSMCs. It is known that
PYTHIA tends to give softer spectra than HERWIG, which is therefore what we expect to
and do find with MC@NLO/PY and MC@QNLO/HW. At large p;’s, MCQNLO/PY coincides
with MCQNLO/HW — both in shape and in absolute normalization, which is again what
we expect.

In figure 3 we also show the scale dependence of MCQNLO/PY, determined according
to the following procedure. The renormalization-scale variations are defined as the differ-
ences between the results obtained with (ug, up) = (ms, my) (i.e. the default), and those
obtained with (ug, ur) = (fmg,my), where f = 1/2 and f = 2; these differences are com-
puted bin-by-bin for all observables studied. Likewise, for the factorization-scale variations
one considers (pg, ptr) = (Mg, fmy). The renormalization- and factorization-scale varia-
tions of like sign are then summed in quadrature, and the results are then summed to (for
positive variations) or subtracted from (for negative variations) the default cross section.
The ratios of the two predictions obtained in this way over the default cross section are
displayed in the insets of figure 3 as the upper and lower bounds of the shaded areas, for
the two observables considered there. In spite of the lack of statistics in the high-p, tails?
the trend is clear: the fractional scale dependence grows from about +5% at low p;’s to
about +10% at large p;’s. This has to be compared with the pure-NLO result (not shown
here) that features a decrease in the scale dependence, from +15% at low p;’s to +=10% at
large p;’s; this behaviour results from a dependence on py almost constant w.r.t. p;, and a
dependence on iy decreasing with pr (due to the running of ag). The scale dependences of
MC@NLO/PY and of the pure-NLO predictions are therefore consistent at large p;’s. This
is what we expect, since there the MC@QNLO/PY result is basically coincident with the NLO
one, the effect of the shower being negligible on these inclusive variables. The size of the
scale dependence is also compatible with the fact that, in fixed-order perturbation theory,
O(ay) is actually the first order that contributes to p; > 0. This observation therefore
applies also to low p;’s in the case of the pure-NLO predictions, but it does not in the case
of MC@QNLO/PY. In fact, MCQ@NLO/PY fills the low- and intermediate-p; regions mostly
through the showering of S events. The shower, however, determines only the kinematics
of the final-state configuration (i.e., the p; of the W and of the hardest jet here), but the
weights are given by the short-distance cross section of eq. (2.48), and therefore receive
both O(a?) and O(as) contributions. This implies that in the low-p; region one expects

2MC@NLO outputs unweighted events. The plots presented here have been obtained with 5-10%-event
samples, and therefore less than five hundred events have pr’s larger than a few hundreds GeV.
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Figure 4. Same as in figure 3. Left pane: rapidity of the W boson. Right pane: rapidity of the
hardest jet of the event.

MC@NLO/PY to have a scale dependence smaller than that of the tree-level O(ayg) term
alone, which is what we observe. We conclude this discussion by noting that other defini-
tions can be given of the uncertainties associated with mass scales (e.g., variations may be
summed linearly rather than in quadrature), without this changing the pattern found here.
We also point out that the scale dependences of the rapidity observables which we shall
discuss below are rather featureless (i.e., scale variations are independent of rapidities),
and therefore they will not be shown in what follows.

In figure 4 we consider the rapidity distributions of the W boson (left pane), and of
the hardest jet of the event (right pane). In the absence of any cuts in p;, the boson rapidity
is an inclusive variable unaffected by large logarithms, and both NLO computations and
MC simulations should predict it relatively well. We do indeed see an overall consistency
among MCQ@NLO/PY, MCQNLO/HW, and PYTHIA standalone. Differences among the
three predictions are larger in the case of the rapidity of the hardest jet, since this is a
less inclusive variable w.r.t. the W rapidity, and is also more sensitive to hadronization
corrections. The PYTHIA standalone results have been rescaled by the NLO K-factor,
OnLo/0 Lo, before any cuts are applied and jets are reconstructed.

Finally, in figure 5 we consider the difference between the rapidities of the W boson
and of the hardest jet, for two different cuts on the transverse momentum of the hardest
jet. The PYTHIA standalone results have been rescaled in the same way as in figure 4. This
observable and its analogues (with yy replaced by yg, S being the system emerging from
the hard process at the Born level - e.g. the ¢t pair in top-pair production) has attracted
some attention in the past (see e.g. ref. [15] for a recent discussion), owing to the fact
that MCQNLO/HW has a different behaviour around ys — y; ~ 0 w.r.t. the underlying
NLO computation — the former being flatter than the latter, or having a dip, depending
on the nature of the system S. The “flatness” or the presence of a dip is a feature of
MC simulations, and more specifically is a consequence of the choices made for initial
conditions, as was done here for PYTHIA in eq. (2.34). It has to be stressed that this
is true for both HERWIG and PYTHIA, as the dashed histogram on the right pane of
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Figure 5. Same as in figure 3, for the difference in rapidity between the W boson and the hardest
jet of the event. Two cuts on the p, of the jet are considered.

figure 5 shows, and therefore has nothing to do with the presence of dead zones? as such

in HERWIG. In PYTHIA, the choice of initial conditions is much more flexible than in
HERWIG, and one can make the dip of figure 5 disappear by choosing a large-enough scale
as the maximum virtuality allowed for the shower. In doing so, however, one may extend
the collinear approximation, that is the core of both HERWIG and PYTHIA, outside its
proper range of validity, and we consider the choice made in eq. (2.34) a sensible one. H
events in MC@QNLO, or matrix element corrections in HERWIG and PYTHIA, will give a
substantial contribution to the region yg —y; ~ 0 (see the solid and dotted histograms in
figure 5), where the predictions will become closer (w.r.t. those of MC simulations without
matrix element corrections) to the pure-NLO results. Differences will in general remain,
that can be formally ascribed to effects beyond NLO.

In order to further this argument, we consider an extension of the choice made in
eq. (2.34). Namely, we parametrize the maximum virtuality allowed in the shower in terms
of a number f introduced as follows:

L (3.1)

2
] < (fmy)? = Oi= @<y— 1-(a+2f )m> :
The plots shown so far have therefore been obtained with f = 1. In figure 6 we consider
again the difference in rapidity of figure 5, with f = 1/2 (dotted red histograms) and
with f = 2 (dashed blue histograms), together with our default choice f = 1 (solid black
histograms); we point out that for the values of f considered here the fraction of negative
weights is basically a constant. Two additional p; cuts are also considered on top of those
of figure 5. The results obtained with PYTHIA feature a very large sensitivity to the choice
of f, while those obtained with MCQNLO/PY are fairly stable. One may be tempted to use
the results of figure 6 in order to “tune” the parameter f, and obtain a PYTHIA prediction

in decent agreement with that of MCQNLO/PY. However, this is an a posteriori procedure,

¥Negative weights in MC@NLO are also not an issue. This is a fortiori true in MC@QNLO/PY, where
they are basically negligible.
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which can be justified phenomenologically, but which implies that any possibility is given
up of a sensible estimate of the theoretical uncertainties affecting the observable considered
here; also, such a procedure is in general observable-dependent. Indeed, the left pane of
figure 6 shows that, if no information on 2 — 2 matrix elements is included, this rapidity
difference basically cannot be predicted by Monte Carlos at moderate and large p;’s. This
is not surprising, given that one is attempting to use the collinear approximation outside
its range of validity: the correct result can be recovered (which is equivalent to choosing
the argument of a logarithm so as its numerical value coincides with a given constant),
but only in a heuristic way. The situation improves if the correct information on matrix
elements is used, as in MC@QNLO/PY. This is analogous to what happens when one varies
the renormalization and factorization scales, at the LO and the NLO levels. As in the
case of scale variations, extreme values for f will lead to problems; however, f = O(1)
appears to be a safe choice, allowing one to realistically estimate theoretical uncertainties.
We conclude by mentioning that other observables (such as those shown in figure 3 and 4)
display the same pattern of dependence on f as the observable in figure 6. We shall discuss
this issue further [16] by considering also the case of Higgs production, where the effects
are more pronounced.

4 Conclusions

We have presented the construction of the matching between an NLO QCD computation
and the virtuality-ordered PYTHIA Monte Carlo, according to the MCQNLO formalism.
We have limited ourselves to considering only the case of initial-state radiation, and applied
the formalism to the study of W hadroproduction. Owing to the different structures of
HERWIG and PYTHIA, the short-distance MCQNLO cross sections used to generate hard
events are different in the two cases. However, the FKS subtraction, which is the method
used in MCQNLO for dealing with infrared singularities, needs no modifications, and is
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able to treat both MCs. Likewise, no changes are needed in the MCQNLO formalism, and
the matching with PYTHIA is achieved by performing a process-independent calculation.

For the process considered in this paper, the fraction of negative weights in
MC@NLO/PY is much smaller than that in MCQNLO/HW. From the physical viewpoint,
the pattern of the comparison between MCQNLO, pure-NLO, and PSMC results is the
same for MC@QNLO/PY as for MC@NLO/HW — MC@NLO shows the same behaviour as
the NLO or MC where either one is most reliable, with a smooth transition between the
hard and soft-collinear emission regions.

Although the process studied in this paper is particularly simple, the formulae given
here will be basically sufficient for performing the matching in the case of more complicated
reactions (and limited to initial-state branchings only). Therefore, the results presented
here are the first step towards the construction of MC@NLO/PY for generic processes,
where also final-state radiation is present, and towards the extension of this formalism to
the ppr-ordered version of PYTHIA.
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