34 research outputs found

    Plate motions recorded in tectonostratigraphic terranes of the Franciscan Complex and evolution of the Mendocino triple junction, northwestern California

    Get PDF
    The Mendocino triple junction area of northern California is underlain by the Coastal belt of the Franciscan complex, flanked on the east by the Central and Eastern belts of the Franciscan Complex. The coastal belt is further divided into three tectonostratigraphic terranes. Upper Cretaceous through middle Miocene rocks included in these terranes were accreted to the North American plate margin partly during normal convergence with the Farallon plate between 49 and 25 Ma at poleward rates of 2 to 5cm /yr, and partly during translation with the Pacific plate between 14 and 2 Ma at poleward rates of 3 to 6cm/yr. The evolution of the triple junction is discussed. -from Author

    Differential Extinction and the Contrasting Structure of Polar Marine Faunas

    Get PDF
    Background: The low taxonomic diversity of polar marine faunas today reflects both the failure of clades to colonize or diversify in high latitudes and regional extinctions of once-present clades. However, simple models of polar evolution are made difficult by the strikingly different faunal compositions and community structures of the two poles. Methodology/Principal Findings: A comparison of early Cenozoic Arctic and Antarctic bivalve faunas with modern ones, within the framework of a molecular phylogeny, shows that while Arctic losses were randomly distributed across the tree, Antarctic losses were significantly concentrated in more derived families, resulting in communities dominated by basal lineages. Potential mechanisms for the phylogenetic structure to Antarctic extinctions include continental isolation, changes in primary productivity leading to turnover of both predators and prey, and the effect of glaciation on shelf habitats. Conclusions/Significance: These results show that phylogenetic consequences of past extinctions can vary substantially among regions and thus shape regional faunal structures, even when due to similar drivers, here global cooling, and provide the first phylogenetic support for the ‘‘retrograde’ ’ hypothesis of Antarctic faunal evolution

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    The John Williams Index of Palaeopalynology

    Get PDF
    The John Williams Index of Palaeopalynology (JWIP) is the result of the lifetime's work of Dr John E. Williams. Housed at the Department of Palaeontology of The Natural History Museum (NHM) in London, the JWIP is publically available and provides probably the most comprehensive fully cross-referenced catalogue on palaeopalynology in the world. It has 23,350 references to fossil palynomorph genera or species as of February 2012. Since its inception in 1971, every publication in the collection referring to a fossil palynomorph genus or species has been critiqued by John E. Williams. Each item is given an accession number and appropriately referenced within the JWIP using index cards which are sorted alphabetically. Once added to the main reference subindex, further entries are completed for four themed subindexes. The first three of these are sets of cards on the three major palynomorph groups (acritarchs/dinoflagellate cysts, chitinozoa and pollen/spores), 26 stratigraphical intervals and 17 geographical areas. The fourth themed subindex is where each palynomorph taxon has a card (or cards) listing all the records of that species in the literature within six categories (acritarchs, dinoflagellate cysts, chitinozoa, fungal spores, pollen/spores and miscellaneous). Due to the sustained and meticulous recording of data since 1971, users can therefore search the database by major palynomorph group, species, age and/or geographical region. The comprehensive and cross-referenced nature of the JWIP means that researchers can readily identify key publications on, for example, specific palynomorph types over a particular interval in a prescribed area. The JWIP is currently entirely analogue, but the NHM is currently evaluating potential strategies for digitisation
    corecore