101 research outputs found
Modelling of priority pollutants releases from urban areas
In the framework of the EU project ScorePP (Source Control Options for Reducing Emissions of Priority Pollutants), dynamic PPs (priority pollutants) fate models are being developed to assess appropriate strategies for limiting the release of PPs from urban sources and for treating PPs on a variety of spatial scales. Different possible sources of PP releases were mapped and both their release pattern and their loads were quantified as detailed as possible.
This paper focuses on the link between the gathered PP sources data and the dynamic models of the urban environment. This link consists of: (1) a method for the quantitative and structured storage of temporal emission pattern information, (2) the coupling of GIS-based spatial emission source data with temporal emission pattern information and (3) the generation of PP release time series to feed the dynamic sewer catchment model.
Steps 2 and 3 were included as the main features of a dedicated software tool. Finally, this paper also illustrates the method’s applicability to generate model input timeseries for generic pollutants (N, P and COD/BOD) in addition to priority pollutants
Heat risk assessment for the Brussels capital region under different urban planning and greenhouse gas emission scenarios
Urban residents are exposed to higher levels of heat stress in comparison to the rural population. As this phenomenon could be enhanced by both global greenhouse gas emissions (GHG) and urban expansion, urban planners and policymakers should integrate both in their assessment. One way to consider these two concepts is by using urban climate models at a high resolution. In this study, the influence of urban expansion and GHG emission scenarios is evaluated at 100 m spatial resolution for the city of Brussels (Belgium) in the near (2031-2050) and far (2081-2100) future. Two possible urban planning scenarios (translated into local climate zones, LCZs) in combination with two representative concentration pathways (RCPs 4.5 and 8.5) have been implemented in the urban climate model UrbClim. The projections show that the influence of GHG emissions trumps urban planning measures in each period. In the near future, no large differences are seen between the RCP scenarios; in the far future, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ type, heat stress is projected to increase by a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk, most notably for the North Western part of the Brussels Capital Region. The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in cities
A comparative illustration of foundational ontologies : BORO and UFO
This paper investigates the differences that exist between a 3D and a 4D ontology. We examine these differences by comparing both ontologies through the metaphysical choices each ontology makes and explore the composing characteristics that define them. More specifically, the differences between the ontologies were illustrated through several modeling fragments that were derived from a modeling case presented at the 5thOntoCom workshop. Each of these modeling fragments focused on the metaphysical choices that the ontologies make –Essence and Identity, Relationships and Time. These comparisons highlighted the different ontological approaches and structures that exist between the ontologies. Moreover, depending on the ontology, the resulting conceptual model could differ substantially, confirming the impact and importance of the choice of a certain ontology. The observed differences between both ontologies eventually led us to formulate three discussion points that question the applicability of certain metaphysical choices in certain circumstances, and that can serve as a basis for future discussion or future research studies in the domain of ODCM
Assessment of exposure determinants and exposure levels by using stationary concentration measurements and a probabilistic near-field/far-field exposure model
Funding Information: The authors thank Prof. Paul Hewett (Exposure Assessment Solutions, Inc., Morgantown, WV) for his assistance with revising the probabilistic exposure model parametrization and interpretation of the results. Publisher Copyright: © 2021 Koivisto AJ et al.Background: The Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation requires the establishment of Conditions of Use (CoU) for all exposure scenarios to ensure good communication of safe working practices. Setting CoU requires the risk assessment of all relevant Contributing Scenarios (CSs) in the exposure scenario. A new CS has to be created whenever an Operational Condition (OC) is changed, resulting in an excessive number of exposure assessments. An efficient solution is to quantify OC concentrations and to identify reasonable worst-case scenarios with probabilistic exposure modeling. Methods: Here, we appoint CoU for powder pouring during the industrial manufacturing of a paint batch by quantifying OC exposure levels and exposure determinants. The quantification was performed by using stationary measurements and a probabilistic Near-Field/Far-Field (NF/FF) exposure model. Work shift and OC concentration levels were quantified for pouring TiO 2 from big bags and small bags, pouring Micro Mica from small bags, and cleaning. The impact of exposure determinants on NF concentration level was quantified by (1) assessing exposure determinants correlation with the NF exposure level and (2) by performing simulations with different OCs. Results: Emission rate, air mixing between NF and FF and local ventilation were the most relevant exposure determinants affecting NF concentrations. Potentially risky OCs were identified by performing Reasonable Worst Case (RWC) simulations and by comparing the exposure 95 th percentile distribution with 10% of the occupational exposure limit value (OELV). The CS was shown safe except in RWC scenario (ventilation rate from 0.4 to 1.6 1/h, 100 m 3 room, no local ventilation, and NF ventilation of 1.6 m 3/min). Conclusions: The CoU assessment was considered to comply with European Chemicals Agency (ECHA) legislation and EN 689 exposure assessment strategy for testing compliance with OEL values. One RWC scenario would require measurements since the exposure level was 12.5% of the OELV.Peer reviewe
- …