175 research outputs found
Preliminary foodnet data on the incidence of foodborne infection, 10 US sites 2004
The 2004 data indicate declines in the incidence of infections caused by Campylobacter, Cryptosporidium, Shiga toxin--producing Escherichia coli (STEC) O157, Listeria, Salmonella, and Yersinia. Declines in Campylobacter and Listeria incidence are approaching national health objectives (objectives 10-1a through 1d); for the first time, the incidence of STEC O157 infections in FoodNet is below the 2010 target (U.S. Department of Health and Human Services 2000, U.S. Department of Agriculture 2003)(Table)
World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies for the Use of Antimicrobials in Food Production Animals
The use of antimicrobials in food animals creates an important source of antimicrobial-resistant bacteria that can spread to humans through the food supply. Improved management of the use of antimicrobials in food animals, particularly reducing the usage of those that are "critically important” for human medicine, is an important step toward preserving the benefits of antimicrobials for people. The World Health Organization has developed and applied criteria to rank antimicrobials according to their relative importance in human medicine. Clinicians, regulatory agencies, policy makers, and other stakeholders can use this ranking when developing risk management strategies for the use of antimicrobials in food production animals. The ranking allows stakeholders to focus risk management efforts on drugs used in food animals that are the most important to human medicine and, thus, need to be addressed most urgently, such as fluoroquinolones, macrolides, and third- and fourth-generation cephalosporin
Salmonella enterica serotype Typhimurium DT104 Isolated from Humans, United States, 1985, 1990, and 1996
First isolated from an ill person in 1985, multidrug-resistant Salmonella enterica serotype Typhimurium DT104 emerged in the mid-1990s as a strain of Salmonella frequently isolated from humans in the United States. We compared the integron content, plasmid profile, and XbaI pulsed-field gel electrophoresis (PFGE) patterns of multidrug-resistant S. Typhimurium DT104 (MR-DT104) isolated from humans in the United States in 1985, 1990, and 1996. All isolates contained a 60-mDa plasmid and had indistinguishable PFGE and integron profiles, supporting the idea of a clonal relationship between recent and historical isolates. The data suggest that the widespread emergence of MR-DT104 in humans and animals in the 1990s may have been due to the dissemination of a strain already present in the United States rather than the introduction of a new strain
The Routine Use of Antibiotics to Promote Animal Growth Does Little to Benefit Protein Undernutrition in the Developing World
Some persons argue that the routine addition of antibiotics to animal feed will help alleviate protein undernutrition in developing countries by increasing meat production. In contrast, we estimate that, if all routine antibiotic use in animal feed were ceased, there would be negligible effects in these countries. Poultry and pork production are unlikely to decrease by more than 2%. Average daily protein supply would decrease by no more than 0.1 g per person (or 0.2% of total protein intake). Eliminating the routine use of in-feed antibiotics will improve human and animal health, by reducing the development and spread of antibiotic-resistant bacteri
Drug-resistant Escherichia coli, Rural Idaho
Stool carriage of drug-resistant Escherichia coli in home-living residents of a rural community was examined. Carriage of nalidixic acid–resistant E. coli was associated with recent use of antimicrobial agents in the household. Household clustering of drug-resistant E. coli was observed. Most carriers of drug-resistant E. coli lacked conventional risk factors
Global Burden of Invasive Nontyphoidal Salmonella Disease, 2010
Nontyphoidal Salmonella is a major cause of bloodstream infections worldwide, and HIV-infected persons and malaria-infected and malnourished children are at increased risk for the disease. We conducted a systematic literature review to obtain age group–specific, population-based invasive nontyphoidal Salmonella (iNTS) incidence data. Data were categorized by HIV and malaria prevalence and then extrapolated by using 2010 population data. The case-fatality ratio (CFR) was determined by expert opinion consensus. We estimated that 3.4 (range 2.1–6.5) million cases of iNTS disease occur annually (overall incidence 49 cases [range 30–94] per 100,000 population). Africa, where infants, young children, and young adults are most affected, had the highest incidence (227 cases [range 152–341] per 100,000 population) and number of cases (1.9 [range 1.3–2.9] million cases). An iNTS CFR of 20% yielded 681,316 (range 415,164–1,301,520) deaths annually. iNTS disease is a major cause of illness and death globally, particularly in Africa. Improved understanding of the epidemiology of iNTS is needed
HIV infection as a risk factor for shigellosis.
We investigated cases of shigellosis in San Francisco and Alameda Counties identified during 1996 by active laboratory surveillance to assess the role of HIV infection as a risk factor for shigellosis. Dramatically elevated rates of shigellosis in HIV-infected persons implicate HIV infection as an important risk factor for shigellosis in San Francisco
International Health Regulations—What Gets Measured Gets Done
Focus on goals and metrics for 4 core capacities illustrates 1 approach to implementing IHR
Unintended consequences associated with national-level restrictions on antimicrobial use in food-producing animals
Among actions needed to address the antimicrobial resistance crisis are restrictions on the use of medically important antimicrobials in food-producing animals, which are often administered through national-level
policy
Ceftriaxone-Resistant Salmonella Infection Acquired by a Child from Cattle
Background The emergence of resistance to antimicrobial agents within the salmonellae is a worldwide problem that has been associated with the use of antibiotics in livestock. Resistance to ceftriaxone and the fluoroquinolones, which are used to treat invasive salmonella infections, is rare in the United States. We analyzed the molecular characteristics of a ceftriaxone-resistant strain of Salmonella enterica serotype typhimurium isolated from a 12-year-old boy with fever, abdominal pain, and diarrhea. Methods We used pulsed-field gel electrophoresis and analysis of plasmids and β-lactamases to compare the ceftriaxone-resistant S. enterica serotype typhimurium from the child with four isolates of this strain obtained from cattle during a local outbreak of salmonellosis. Results The ceftriaxone-resistant isolate from the child was indistinguishable from one of the isolates from cattle, which was also resistant to ceftriaxone. Both ceftriaxone-resistant isolates were resistant to 13 antimicrobial agents; all but one of the resistance determinants were on a conjugative plasmid of 160 kb that encoded the functional group 1 β-lactamase CMY-2. Both ceftriaxone-resistant isolates were closely related to the three other salmonella isolates obtained from cattle, all of which were susceptible to ceftriaxone. Conclusions This study provides additional evidence that antibiotic-resistant strains of salmonella in the United States evolve primarily in livestock. Resistance to ceftriaxone, the drug of choice for invasive salmonella disease, is a public health concern, especially with respect to children, since fluoroquinolones, which can also be used to treat this disease, are not approved for use in children
- …