26 research outputs found

    Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian marine Sponge Aplysinella rhax

    Get PDF
    Ten bromotyrosine alkaloids( 1 ‐ 10 ) were isolated and characterised from the marine sponge Aplysinella rhax ( de Laubenfels 1954) collected from the Fiji Islands, which included one new bromotyrosine analogue, psammaplin P ( 6 ) and two other analogues, psammaplins O ( 5 ) and 4‐bromo‐6‐carbomethoxy salicylic acid ( 7 ), which have not been previously reported from natural sources. HRESIMS, 1D and 2D NMR spectroscopic methods were used in the elucidation of the compounds. Bisaprasin, a biphenylic dimer of psammaplin A, showed moderate activity with IC 50 at 19+/‐ 5 and 29+/‐ 6 μM against Trypanzoma cruzi Tulahuen C4, and the lethal human malaria species Plasmodium falciparum clone 3D7, respectively, while psammaplins A ( 1 ) and D ( 4 ) exhibited low activity against both parasites. This is the first report of the antimalarial and antitrypanosomal activity of the psammaplin‐type compounds. Additionally, the biosynthesis hypotheses of the three natural products ( 5 , 6 and 7 ) were proposed

    Signalling and Bioactive Metabolites from Streptomyces sp. RK44

    Get PDF
    Q.F. is grateful to the University of Aberdeen Elphinstone Scholarship and Scottish Funding Council/ScotCHEM for financial support through the PEER/PERCE Funding. FM thanks the University of the Philippines for the Faculty, Reps and Staff Development Program (FRAS DP) for the PhD grant fellowship. HD and KK thank the financial supports of Leverhulme Trust-Royal Society Africa award (AA090088) and the jointly funded UK Medical Research Council-UK Department for International Development (MRC/DFID) Concordat agreement African Research Leaders Award (MR/S00520X/1).Peer reviewedPublisher PD

    Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi

    Get PDF
    Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.This work was funded by the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET) https://www.isciii.es/Paginas/Inicio.aspx - https://www.ricet.es/proyectos: RD16/0027/0014 (DGP), RD16/0027/0015 (FV), and RD12/0018/0005 (FV); by the MCIN/AEI/10.13039/501100011033 https://www.aei.gob.es/ayudas-concedidas/buscador-ayudas-concedidas: PID2019-109623RB-I00 (DGP); by the MCIN/AEI/10.13039/501100011033 and FEDER Una manera de hacer Europa https://www.aei.gob.es/fondos-europeos/fondos-feder: 2016-79957-R (DGP); and by the Junta de Andalucía https://www.juntadeandalucia.es/organismos/universidadinvestigacioneinnovacion/servicios/procedimientos.html: BIO-199 (LMRP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Preclinical evaluation of strasseriolides A–D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251.

    Get PDF
    Background: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. Methods: Preclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS Lumina II imager. Results: Strasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. Conclusions: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.This work was funded by the European Commission FP7 Marie Curie Initial Training Network “ParaMet” [grant agreement 290080], the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014, RD16/0027/0015, and RD12/0018/0005), the Plan Nacional (PID2019-109623RB-100 and SAF 2016-79957-R) and by the Junta de Andalucía (BIO-199). The polarimeter, HPLC, IR, NMR equipment, and plate reader used in this work were purchased via grants for scientific and technological infrastructures from the Ministerio de Ciencia e Innovación [Grants Nos. PCT- 010000-2010-4 (NMR), INP-2011-0016-PCT-010000 ACT6 (polarimeter, HPLC, and IR), and PCT-01000-ACT7, 2011-13 (plate reader)]

    Preclinical evaluation of strasseriolides A–D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251.

    Get PDF
    Background: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. Methods: Preclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS Lumina II imager. Results: Strasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. Conclusions: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.This work was funded by the European Commission FP7 Marie Curie Initial Training Network “ParaMet” [grant agreement 290080], the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014, RD16/0027/0015, and RD12/0018/0005), the Plan Nacional (PID2019-109623RB-100 and SAF 2016-79957-R) and by the Junta de Andalucía (BIO-199). The polarimeter, HPLC, IR, NMR equipment, and plate reader used in this work were purchased via grants for scientific and technological infrastructures from the Ministerio de Ciencia e Innovación [Grants Nos. PCT- 010000-2010-4 (NMR), INP-2011-0016-PCT-010000 ACT6 (polarimeter, HPLC, and IR), and PCT-01000-ACT7, 2011-13 (plate reader)].Peer reviewe

    Establishment of a screening platform based on human coronavirus OC43 for the identification of microbial natural products with antiviral activity

    Get PDF
    Human coronaviruses (HCoVs) cause respiratory tract infections and are of great importance due to the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Human betacoronavirus OC43 (HCoV-OC43) is an adequate surrogate for SARS-CoV-2 because it infects the human respiratory system, presents a comparable biology, and is transmitted in a similar way. Its use is advantageous since it only requires biosafety level (BSL)-2 infrastructure which minimizes costs and biosafety associated limitations. In this report, we describe a high-throughput screening (HTS) platform to identify compounds that inhibit the propagation of HCoV-OC43. Optimization of assays based on inhibition of the cytopathic effect and virus immunodetection with a specific antibody, has provided a robust methodology for the screening of a selection of microbial natural product extracts from the Fundación MEDINA collection. Using this approach, a subset of 1280 extracts has been explored. Of these, upon hit confirmation and early LC-MS dereplication, 10 extracts were identified that contain potential new compounds. In addition, we report on the novel antiviral activity of some previously described natural products whose presence in bioactive extracts was confirmed by LC/MS analysis.This work was funded by the the European Commission—Next Generation EU (regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global), the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014), the MCIN/AEI/10.13039/501100011033 (PID2019-109623RB-I00), the MCIN/AEI/10.13039/501100011033 and FEDER Una manera de hacer Europa (2016-79957-R) and by the Junta de Andalucía (BIO-199)N

    Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges

    Get PDF
    In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery

    Pipecolisporin, a novel cyclic peptide with antimalarial and antitrypanosome activities from a wheat endophytic nigrospora oryzae

    No full text
    A novel cyclic antimalarial and antitrypanosome hexapeptide, pipecolisporin (1), was isolated from cultures of Nigrospora oryzae CF-298113, a fungal endophyte isolated from roots of Triticum sp. collected in a traditional agricultural land of Montefrío, Granada, Spain. The structure of this compound, including its absolute configuration, was elucidated by HRMS, 1-D and 2-D NMR spectroscopy, and Marfey’s analysis. This metabolite displayed interesting activity against Plasmodium falciparum and Trypanosoma cruzi, with IC values in the micromolar range, and no significant cytotoxicity against the human cancer cell lines A549, A2058, MCF7, MIA PaCa-2, and HepG2.Financial support was received from the Junta de Andalucía through grant number PY18-RE-0027 and from the Instituto de Salud Carlos III Subdirección General de Redes y Centros deInvestigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET:RD16/0027/0014, RD16/0027/0015, and RD12/0018/0005), and the Plan Nacional (SAF2016-79957-R). The polarimeter, HPLC, IR, NMR equipment, and plate reader used in this work were purchasedvia grants for scientific and technological infrastructures from the Ministerio de Ciencia e Innovación[Grants Nos. PCT-010000-2010-4 (NMR), INP-2011-0016-PCT-010000 ACT6 (polarimeter, HPLC, andIR), and PCT-01000-ACT7, 2011-13 (plate reader)

    Cytotoxycity and antiplasmodial activity of phenolic derivatives from Albizia zygia (DC.) J.F. Macbr. (Mimosaceae)

    No full text
    © The Author(s).[Background]: The proliferation and resistance of microorganisms area serious threat against humankind and the search for new therapeutics is needed. The present report describes the antiplasmodial and anticancer activities of samples isolated from the methanol extract of Albizia zygia (Mimosaseae).[Material]: The plant extract was prepared by maceration in methanol. Standard chromatographic, HPLC and spectroscopic methods were used to isolate and identify six compounds (1–6). The acetylated derivatives (7–10) were prepared by modifying 2-O-β-D-glucopyranosyl-4-hydroxyphenylacetic acid and quercetin 3-O-α-L-rhamnopyranoside, previously isolated from A. zygia (Mimosaceae). A two-fold serial micro-dilution method was used to determine the IC50s against five tumor cell lines and Plasmodium falciparum.[Results]: In general, compounds showed moderate activity against the human pancreatic carcinoma cell line MiaPaca-2 (10 20 μM). Additionally, the two semi-synthetic derivatives of quercetin 3-O-α-L-rhamnopyranoside exhibited significant activity against P. falciparum with IC50 of 7.47 ± 0.25 μM for compound 9 and 6.77 ± 0.25 μM for compound 10, higher than that of their natural precursor (IC50 25.1 ± 0.25 μM).[Conclusion]: The results of this study clearly suggest that, the appropriate introduction of acetyl groups into some flavonoids could lead to more useful derivatives for the development of an antiplasmodial agent.RRK is grateful to the Organization for Prohibition of Chemical Weapons (OPCW) who granted him a scholarship (N°L/ICA/ICB/201822/17) which allow him to conduct part of his PhD study at the Fundación MEDINA (Spain).Peer reviewe

    Antiparasitic Activities of Compounds Isolated from <i>Aspergillus fumigatus</i> Strain Discovered in Northcentral Nigeria

    Get PDF
    In this study, we explored a fungal strain UIAU-3F identified as Aspergillus fumigatus isolated from soil samples collected from the River Oyun in Kwara State, Nigeria. In order to explore its chemical diversity, the fungal strain UIAU-3F was cultured in three different fermentation media, which resulted in different chemical profiles, evidenced by LC-ESI-MS-based metabolomics and multivariate analysis. The methanolic extract afforded two known compounds, fumitremorgin C (1) and pseurotin D (2). The in vitro antiparasitic assays of 1 against Trypanosoma cruzi and Plasmodium falciparum showed moderate activity with IC50 values of 9.6 µM and 2.3 µM, respectively, while 2 displayed IC50 values > 50 µM. Molecular docking analysis was performed on major protein targets to better understand the potential mechanism of the antitrypanosomal and antiplasmodial activities of the two known compounds
    corecore