247 research outputs found

    Annual estimates of the unobserved incidental kill of pantropical spotted dolphin (Stenella attenuata attenuata) calves in the tuna purse-seine fishery of the eastern tropical Pacific

    Get PDF
    We estimated the total number of pantropical spotted dolphin (Stenella attenuata) mothers killed without their calves (“calf deficit”) in all tuna purse-seine sets from 1973– 90 and 1996–2000 in the eastern tropical Pacific. Estimates were based on a tally of the mothers killed as reported by color pattern and gender, several color-pattern-based frequency tables, and a weaning model. Over the time series, there was a decrease in the calf deficit from approximately 2800 for the western-southern stock and 5000 in the northeastern stock to about 60 missing calves per year. The mean deficit per set decreased from approximately 1.5 missing calves per set in the mid-1970s to 0.01 per set in the late-1990s. Over the time series examined, from 75% to 95% of the lactating females killed were killed without a calf. Under the assumption that these orphaned calves did not survive without their mothers, this calf deficit represents an approximately 14% increase in the reported kill of calves, which is relatively constant across the years examined. Because the calf deficit as we have defined it is based on the kill of mothers, the total number of missing calves that we estimate is potentially an underestimate of the actual number killed. Further research on the mechanism by which separation of mother and calf occurs is required to obtain better estimates of the unobserved kill of dolphin calves in this fishery

    Blubber Testosterone: A Potential Marker of Male Reproductive Status in Short-Beaked Common Dolphins

    Get PDF
    A novel molecular technique was used to measure blubber testosterone (BT) in 114 male short-beaked common dolphins, Delphinus delphis, collected from incidental fishery bycatch and strandings. When these concentrations were compared across maturity states, the mean (± SEM) BT levels of mature D. delphis (14.3 ± 3.0 ng/g) were significantly higher than those of pubertal (2.5 ± 0.5 ng/g, P = 0.006) and immature animals (2.2 ± 0.3 ng/g, P \u3c 0.0001). BT concentrations in mature males were significantly higher in summer months (53.9 ± 2.0 ng/g) than during the rest of the year (7.9 ± 0.69 ng/g, P \u3c 0.0001), indicating reproductive seasonality. An analysis of BT in different anatomical locations showed that hormone concentrations were not homogenous throughout the body; the levels in the dorsal fin were significantly lower than in most other areas (F = 5.39, P = 0.043). Conversely, we found no significant differences in BT concentration with respect to subepidermal depth (F = 2.09, P = 0.146). Finally, testosterone levels in biopsies from 138 free-swimming male D. delphis, of unknown maturity state, sampled off California were found to be of concentrations similar to those from the fishery bycatch and stranding samples and revealed an analogous trend with respect to ordinal date

    Blubber Testosterone: A Potential Marker of Male Reproductive Status in Short-Beaked Common Dolphins

    Get PDF
    A novel molecular technique was used to measure blubber testosterone (BT) in 114 male short-beaked common dolphins, Delphinus delphis, collected from incidental fishery bycatch and strandings. When these concentrations were compared across maturity states, the mean (± SEM) BT levels of mature D. delphis (14.3 ± 3.0 ng/g) were significantly higher than those of pubertal (2.5 ± 0.5 ng/g, P = 0.006) and immature animals (2.2 ± 0.3 ng/g, P \u3c 0.0001). BT concentrations in mature males were significantly higher in summer months (53.9 ± 2.0 ng/g) than during the rest of the year (7.9 ± 0.69 ng/g, P \u3c 0.0001), indicating reproductive seasonality. An analysis of BT in different anatomical locations showed that hormone concentrations were not homogenous throughout the body; the levels in the dorsal fin were significantly lower than in most other areas (F = 5.39, P = 0.043). Conversely, we found no significant differences in BT concentration with respect to subepidermal depth (F = 2.09, P = 0.146). Finally, testosterone levels in biopsies from 138 free-swimming male D. delphis, of unknown maturity state, sampled off California were found to be of concentrations similar to those from the fishery bycatch and stranding samples and revealed an analogous trend with respect to ordinal date

    Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    Get PDF
    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome

    skelesim : an extensible, general framework for population genetic simulation in R

    Get PDF
    Simulations are a key tool in molecular ecology for inference and forecasting, as well as for evaluating new methods. Due to growing computational power and a diversity of software with different capabilities, simulations are becoming increasingly powerful and useful. However, the widespread use of simulations by geneticists and ecologists is hindered by difficulties in understanding these softwares’ complex capabilities, composing code and input files, a daunting bioinformatics barrier, and a steep conceptual learning curve. skeleSim (an R package) guides users in choosing appropriate simulations, setting parameters, calculating genetic summary statistics, and organizing data output, in a reproducible pipeline within the R environment. skeleSim is designed to be an extensible framework that can ‘wrap’ around any simulation software (inside or outside the R environment) and be extended to calculate and graph any genetic summary statistics. Currently, skeleSim implements coalescent and forward-time models available in the fastsimcoal2 and rmetasim simulation engines to produce null distributions for multiple population genetic statistics and marker types, under a variety of demographic conditions. skeleSim is intended to make simulations easier while still allowing full model complexity to ensure that simulations play a fundamental role in molecular ecology investigations. skeleSim can also serve as a teaching tool: demonstrating the outcomes of stochastic population genetic processes; teaching general concepts of simulations; and providing an introduction to the R environment with a user-friendly graphical user interface (using shiny)

    Mutations and Binding Sites of Human Transcription Factors

    Get PDF
    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, “insertions” are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways

    Meta-Mass Shift Chemical (MeMSChem) profiling of metabolomes from coral reefs

    Get PDF
    Untargeted metabolomics of environmental samples routinely detects thousands of small molecules, the vast majority of which cannot be identified. Meta-mass shift chemical (MeMSChem) profiling was developed to identify mass differences between related molecules using molecular networks. This approach illuminates metabolome-wide relationships between molecules and the putative chemical groups that differentiate them (e.g., H2, CH2, COCH2). MeMSChem profiling was used to analyze a publicly available metabolomic dataset of coral, algal, and fungal mat holobionts (i.e., the host and its associated microbes and viruses) sampled from some of Earth's most remote and pristine coral reefs. Each type of holobiont had distinct mass shift profiles, even when the analysis was restricted to molecules found in all samples. This result suggests that holobionts modify the same molecules in different ways and offers insights into the generation of molecular diversity. Three genera of stony corals had distinct patterns of molecular relatedness despite their high degree of taxonomic relatedness. MeMSChem profiles also partially differentiated between individuals, suggesting that every coral reef holobiont is a potential source of novel chemical diversity

    Structural Requirements for Dihydrobenzoxazepinone Anthelmintics:Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni

    Get PDF
    Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure–activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics

    Evidence of a small, island-associated population of common bottlenose dolphins in the Mariana Islands

    Get PDF
    Small, island-associated populations of cetaceans have evolved around numerous oceanic islands, likely due to habitat discontinuities between nearshore and offshore waters. However, little is known about the ecology and structure of cetacean populations around the Mariana Islands, a remote archipelago in the western Pacific Ocean. We present sighting, photo-identification, and genetic data collected during twelve years of surveys around these islands that reveal the existence of a small, island-associated population of bottlenose dolphins. Nearly half of the photo-identified individuals were encountered in more than one year. Both haplotypic and nuclear genetic diversity among sampled individuals was low (haplotypic diversity = 0.701, nuclear heterozygosity = 0.658), suggesting low abundance. We used mark-recapture analysis of photo-identification data to estimate yearly abundance in the southern portion of the population’s range from 2011 to 2018. Each abundance estimate was less than 54 individuals, with each upper 95% confidence interval below 100. Additional survey effort is necessary to generate a full population abundance estimate. We found extensive introgression of Fraser’s dolphin DNA into both the mitochondrial and nuclear genomes of the population, suggesting at least two hybridization events more than two generations in the past. The Mariana Islands are used extensively by the U.S. military for land and sea training operations. Thus, this unique bottlenose dolphin population likely faces high exposure to multiple threats
    corecore