12 research outputs found

    The COOLER Code:A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters

    Get PDF
    COmputation of Local Electron Release (COOLER), a software program designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for activity distribution on the cell surface, MIRD predictions appeared to fail the most. The proposed method is suitable for Auger-cascade electrons, but can be extended to any energy of interest and to beta spectra; as an example, the (3)H case is also discussed. COOLER is intended to be accessible to everyone (preclinical and clinical researchers included), and may provide important information for the selection of radionuclides, the interpretation of radiobiological or preclinical results, and the general establishment of doses in any scenario, e.g., with cultured cells in the laboratory or with therapeutic or diagnostic applications. The software will be made available for download from the DTU-Nutech website: http://www.nutech.dtu.dk/

    Cell colony counter called CoCoNut

    Get PDF
    Clonogenic assays are powerful tools for testing cell reproductive death after biological damage caused by, for example, ionizing radiation. Traditionally, the methods require a cumbersome, slow and eye-straining manual counting of viable colonies under a microscope. To speed up the counting process and minimize those issues related to the subjective decisions of the scoring personnel, we developed a semi-automated, image-based cell colony counting setup, named CoCoNut (Colony Counter developed by the Nutech department at the Technical University of Denmark). It consists in an ImageJ macro and a photographic 3D-printed light-box, conceived and demonstrated to work together for Crystal Violet-stained colonies. Careful attention was given to the image acquisition process, which allows background removal (i.e. any unwanted element in the picture) in a minimally invasive manner. This is mainly achieved by optimal lighting conditions in the light-box and dividing the image of a flask that contains viable colonies by the picture of an empty flask. In this way, CoCoNut avoids using aggressive background removal filters that usually lead to suboptimal colony count recovery. The full method was tested with V79 and HeLa cell survival samples. Results were compared to other freely available tools. CoCoNut proved able to successfully distinguish between single and merged colonies and to identify colonies bordering on flask edges. CoCoNut software calibration is fast; it requires the adjustment of a single parameter that is the smallest colony area to be counted. The employment of a single parameter reduces the risk of subjectivity, providing a robust and user-friendly tool, whose results can be easily compared over time and among different bio-laboratories. The method is inexpensive and easy to obtain. Among its advantages, we highlight the possibility of combining the macro with a perfectly reproducible 3D-printed light-box. The CoCoNut software and the 3D-printer files are provided as supporting information (S1 CoCoNut Files).</div

    Microbeam evolution: From single cell irradiation to preclinical studies

    Get PDF
    PURPOSE This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on pre-clinical modalities and translation towards clinical application. CONCLUSIONS The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons. In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localized dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT)
    corecore