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Abstract 

 

Purpose 

This review follows the development of microbeam technology from the early days of single 

cell irradiations, to investigations of specific cellular mechanisms and to the development of 

new treatment modalities in vivo. A number of microbeam applications are discussed with a 

focus on preclinical modalities and translation towards clinical application. 

Conclusions 

The development of radiation microbeams has been a valuable tool for the exploration of 

fundamental radiobiological response mechanisms. The strength of micro-irradiation 

techniques lies in their ability to deliver precise doses of radiation to selected individual cells 

in vitro or even to target subcellular organelles. These abilities have led to the development of 

a range of microbeam facilities around the world allowing the delivery of precisely defined 

beams of charged particles, X-rays, or electrons.  

In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular 

events of the DNA damage response following highly localised dose deposition. Further 

advances in very precise beam delivery have also enabled the transition towards new and 

exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane 

parallel microbeams, in Microbeam Radiotherapy (MRT).  
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1. Introduction 

Biological damage induced by ionising radiation occurs due to chemical changes caused by 

ionisation at the cellular level. The classical radiobiology paradigm is that nuclear DNA is the 

primary target for biological damage. The amount of biological damage induced by ionising 

radiation depends on variables including dose, the rate of absorption, the exposed area, and 

the variations in radical species, between specific tissues and cells, and in radiosensitivity 

between individuals (Joiner & van der Kogel 2009).  

Ionising radiation has been successfully exploited in radiotherapy as a powerful cancer 

therapy, which has been significantly refined due to the accumulation of knowledge on its 

effects derived from new advances in epidemiology and radiobiology (Clement et al. 2012). 

Continuous technological advances and new radiobiology challenges are behind the interest 

in the use of micro-irradiation techniques for radiobiological studies. Due to the very small 

beam size and highly precise targeting within the cell, microbeams have empowered 

researchers with unique investigative methods. In particular, the very precise dose delivery 

has played a fundamental role in the investigation of non-targeted effects where the radiation 

response is induced in cells which are not directly exposed to ionising radiation (Schettino et 

al. 2010). The technology has also recently contributed to the discovery of important novel 

time-sensitive interaction mechanisms of ionizing radiation with cells and tissues (Ghita et al. 

2017; Walsh et al. 2017).  

A number of technical features are vital to ensure that microbeams have the versatility and 

high specificity that is key for modern radiobiological experiments. These include the 

targeting accuracy, the particle counting efficiency, the dose rate and the rate at which 

cellular targets can be identified and irradiated.  A wide range of facilities have been 

Acc
ep

te
d 

M
an

us
cr

ipt

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 2

3:
01

 0
9 

Ja
nu

ar
y 

20
18

 



developed worldwide delivering charged particles (including protons and helium ions), X-

rays, and electrons for a number of specific in vitro and in vivo applications.  

Depending on the beam origin, modern microbeams are divided into either cyclotron or 

accelerator based (for particle microbeams), compact X-ray source based (e.g. soft X-ray), 

and synchrotron based facilities.  

For basic radiobiological experiments where individual cells can be targeted, the key 

components of a microbeam are shown in figure 1 and include beam transport and 

microbeam producing devices, radiation detection, beam control, and cell dish design. These 

can be implemented in a number of different ways depending on the specific application of 

the facility. Microbeams are typically also equipped with an imaging station allowing the 

users to identify targets and align them with the radiation probe. They can also be used for 

following up the dynamics of cellular processes such as DNA damage and repair in real time.  

For beam size adjustment, different methods to reduce the beam size are employed depending 

on the target. Cell dish design and particle detection are strongly dependent on the beam 

species, carefully considering beam orientation, any possible beam scatter around the dish or 

the very thin penetration depth of the particular beam. These aspects have been previously 

discussed in an in depth review on technical aspects of microbeams (Schettino et al. 2010).  

In an alternative approach, synchrotron based microbeams deliver X-rays emitted tangentially 

from relativistic electron bunches circulating in a storage ring. The irradiation modality 

consists of an array of microbeams (25-100 m width), created by inserting a multi-slit 

collimator in the path of the high-flux Synchrotron X-Rays (Bräuer-Krisch et al. 2009; 

Bouchet et al. 2016; Smyth et al. 2016). 

Microbeam facilities have been used in a variety of models  to unravel some of the early 

events occurring immediately after the localized DNA damage within irradiated cells and in 

adjacent non irradiated populations both in vitro and in vivo (Richard et al. 2011), (Buonanno 
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et al. 2015) and (A Bertucci et al. 2009) . Recently, the technology has been used to elucidate 

bystander and abscopal effects in vivo (Fernandez-Palomo et al. 2015) using an array of 

microbeams and progressing towards the development of novel radiotherapy modalities: 

microbeam radiation therapy (MRT) (Bräuer-Krisch et al. 2015). 

This review follows the development of microbeam technology from the early days of single 

cell irradiations to the development of new treatment modalities using microbeams focusing 

on preclinical developments and translation towards clinical applications 

2. Particle microbeams  

Microbeam approaches have been around since the early development of a UV microbeam by 

Tschachotin in 1912 (Wu & Hei 2017). The first particle microbeam experiment was 

performed by Zirkle and Bloom in 1953 (Zirkle, Raymond & William 1953) using a 2 MV 

Van de Graaf accelerator to generate energetic protons. Micro-collimators consisting of two 

metal plates, with a groove etched in one of them, were clamped together to achieve a beam 

size of 2.5 μm. This was used to study the process of cell division after proton exposure. 

From here, the development of modern microbeams has intensified in the early 1990s, with 

the early developments using the cyclotron facility at the Brookhaven National Laboratories 

used to simulate the biological effects of cosmic rays. These first observations  of a dose-

volume effect were the beginning of the later proposed MRT technique (W et al. 1959; 

Slatkin D N et al. 1992). Another pioneering study used the 2 MeV tandem accelerator-based 

microbeam at Pacific Northwest Laboratories (Braby 1991). 

Single cell charged particle microbeams can be grouped into two main categories according 

to the approach used to reduce the radiation beam to sub-cellular dimensions: microbeams 

using a collimation assembly and facilities employing electromagnetic focusing. 
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Many of the early microbeams used collimation approaches, whereas electromagnetic 

focusing has recently become a more common approach reflecting both technological 

advances and the need for finer resolution to probe micron level interactions within cells 

(Schettino et al. 2010). 

Collimators and apertures have been extensively used at pioneering facilities of modern 

radiobiological microbeams, including Pacific Northwest Laboratory, the Gray Cancer 

Institute and Columbia University. Using fused silica tubing with apertures as small as 1 μm 

diameters, 90% protons and 99% 
3
He

2+
 were confined within a 2

 
μm spot (Melvyn Folkard et 

al. 1997). Also, laser drilled apertures of 5-6 μm were used to achieve 5 μm beams with 91% 

of non-scattered particles (Melvyn Folkard et al. 1997). 

The electromagnetic focusing approach utilizes a variety of magnetic quadrupoles to obtain 

extremely narrow charged particle beams in vacuum. However, the focused beam has to be 

extracted in air, with a significant scattering induced by the vacuum window, air gap and 

traversal of the cell support membrane.  

Electron microbeams rely on standard electron guns and electrostatic devices for beam 

generation. They produce and accelerate the energetic electron beams, which are 

subsequently reduced to micrometre size by the use of apertures or electromagnetic focusing 

(Sowa et al. 2005). As electrons undergo more scattering when interacting with biological 

samples compared to heavier charged particles, it is challenging for electron microbeams to 

achieve targeting resolutions at the micron or submicron level despite the size of the focused 

beam in vacuum. This poses challenges not only related to the resolution of electron 

microbeams but also to the calculation of the energy deposition and subsequent spatial dose 

distribution at the cellular level. These effects are not only significant for electron 

microbeams, but also for biological dosimetry of low energy electrons in general (Sowa et al. 

2005; Siragusa et al. 2017).  
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An overview of the facilities currently in operation, dedicated to biology or shared with 

analytical experiments, has recently been presented (Barberet & Seznec 2015) and an update 

is shown in table 1.  

 

3.  X-ray microbeams  

Considering the irradiation geometry, X-ray microbeams employ either a single beam or an 

array of microbeams. For cellular irradiation, single X-ray microbeams are used to 

specifically target subcellular compartments of the cells and analyse specific mechanisms 

behind cellular damage repair. However, there is growing interest in the preclinical setting of 

irradiation of in vivo tumours using arrays of microbeams with a more complex geometry and 

dose delivery. In addition to the beam geometry, the X-ray energy used and doses delivered 

will also vary between these two different types of microbeams (Folkard et al. 2001a) 

(Bouchet et al. 2010). A current list of soft X-ray and synchrotron microbeam facilities is 

presented in table 2.  

Single X-ray microbeams have been developed, starting in the 1990s (Schettino et al. 1997) 

to provide quantitative and mechanistic radiobiological information to complement charged 

particle studies. Damage caused by X-rays delivered to a single cell is qualitatively different 

to lesions produced by charged particles due to reduced clustering of the ionizations (D. T. 

Goodhead 1994). As scattering is not as important, X-ray microbeams are, in theory, capable 

of achieving radiation spots of an order of magnitude or more, smaller than those achieved 

with ion beams. Moreover, such this high spatial resolution is maintained as the X-ray beam 

penetrates through cells making it possible to irradiate deeper targets with micron precision, 

making its therapeutic use feasible.  

Modern X-ray microbeams employ benchtop based electron bombardment X-ray sources for 

energies from 278 eV to 4.5 keV (Schettino et al. 2000). In addition to characteristic 
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radiation, the electron bombardment of the target will produce a continuum of 

bremsstrahlung with a maximum energy equivalent to the energy of the incident electrons. 

This radiation is undesirable because it will not be focused correctly, and can be significantly 

more penetrating than the characteristic X-rays. The bremsstrahlung component is removed 

by reflecting the radiation off a silica mirror mounted between the target and the focusing 

assembly (Schettino et al. 2000)  For this type of soft X-ray microbeams very small probes 

can be achieved by the use of X-ray optics developed for high-resolution X-ray microscopic 

imaging.  

The finest X-ray probes have been obtained using zone plates. These are circular diffraction 

gratings with radially increasing line densities, in a fashion that  brings the diffracted X rays 

to an axial focus (Folkard et al. 2001a). As with other diffraction devices, several diffracted 

orders are produced, and the unwanted orders must be prevented from reaching the cells, 

because they will not be appropriately focused. To do this, an arrangement of masks is used 

that allows only the first-order diffracted X-rays to reach the target. An important challenge 

when employing low energy microbeams is the attenuation in air requiring a very delicate 

dish design (Schettino et al. 2000).  

Alongside the self- contained design of these devices, the advantage of electron and X-ray 

microbeams lies in the ability to easily vary the beam energy and therefore the LET. This 

enables a range of investigations in the context of relative biological effectiveness (RBE) for 

different energies. In this respect, electron and X-ray microbeams complement the work done 

with charged particle facilities to investigate the LET dependence (Folkard et al. 2001b; Wu 

& Hei 2017). 

Synchrotron microbeams use much higher energies in the range of 2.34-600 keV (Crosbie et 

al. 2015; Kaminaga et al. 2016). The beamlines use a bending magnet (at low energies) or a 

wiggler (at higher energies) to produce a virtually parallel beam of X-ray with minimal 
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vertical divergence. This is then spatially fractionated using collimators and arranged in an 

array of alternating parallel micro-planar beams and gaps. This segments the high flux X-ray 

beam from a synchrotron into a micro-planar lattice of narrow beams, typically 25-50 μm 

wide and with a centre-to-centre separations of 200 or 400 μm. These can then potentially be 

cross-fired providing a large array of options for novel treatment modalities (Bouchet et al. 

2010; Crosbie et al. 2010). This unique spatial distribution allows the delivery of an array of 

peak and valley doses. The former is directly deposited in the target by the microbeam while 

the latter is deposited in the tissue between the beams by scattered photons (Blattmann et al. 

2005). The dramatic dose difference between heavily (peaks) and lightly (valleys) irradiated 

tissue, promoted when a broad beam is converted into an array of microbeams, is a very 

important characteristic unique to synchrotron microbeams. The peak dose delivered is 

typically up to 300-800 Gy at skin entry, with valley doses of 12-20 Gy and mean dose rates 

in the range of thousands Gy s
-1 

(Crosbie et al. 2010; Bräuer-Krisch et al. 2015).   

This setup has been used to irradiate cells, tissue and small to medium sized animals in an 

experimental technique known as MRT, and a schematic representation of a typical MRT 

dose distribution is shown in figure 2. This modality was shown to have a preferential killing 

effect on tumour cells, which has been demonstrated in glioma models (Fernandez-Palomo et 

al. 2015; Smyth et al. 2016). Hypotheses for the efficacy of MRT suggest it is due to the 

periodically alternating dose distribution, proposing mechanisms based on observations 

including the preferential damage to tumour microvasculature compared to normal brain 

microvasculature in vivo (Bouchet et al. 2010; Bouchet et al. 2016); in-field bystander effects 

related to cellular migration in vitro and in vivo (Crosbie et al. 2010; Bouchet et al. 2017) and 

the communication of stress factors in vitro between peak and valley regions (Smyth et al. 

2016). Research has also revealed that MRT seems to modulate the immune system by 
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regulating the expression of growth factors, cytokines and lymphokines (Bouchet et al. 2013) 

and the recruitment of tumour-associated immune cells (Yang et al. 2014). 

 

4. Microbeam dosimetry challenges 

A key feature of modern microbeam facilities is the ability to establish a priori an accurate 

reproducible dose that will be delivered to each sample. By coupling this with a high 

efficiency detection system, doses can be precisely monitored and  controlled by very fast 

beam shuttering or deflection system (Melvyn Folkard et al. 1997).  

Particle detection characteristics can be used to separate microbeams into two categories 

based on whether the detection occurs before or after the particles reach the biological sample 

( Schettino et al. 2010). By placing the detector between the vacuum window and the sample 

holder, no further constraints are imposed on the sample holder or the cell environment. 

However, the inevitable detector-beam interaction reduces the quality and accuracy of the 

exposure. In order to minimise the energy loss in the detector, only thin, transmission type 

detectors are appropriate. These detectors are generally thin film plastic scintillators which 

generate flashes of light when traversed by particles. These flashes are collected by a 

photomultiplier, and processed into individual particle counts (Melvyn Folkard et al. 1997). 

An alternative configuration consists of placing the detector behind the sample holder. Using 

this approach, no extra scattering is introduced by the detector and better targeting accuracy 

can be reached. While conventional solid state detectors can be used, this configuration 

requires that the delivered particles have enough energy to pass through the sample, setting a 

limit on the lowest usable energy. In many cases it is also necessary to remove the culture 

medium requiring additional procedures to keep cells viable during the irradiation process (M 

Folkard et al. 1997) and (Randers-Pehrson et al. 2001). 
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Due to the small radiation beam and the localized delivery of the radiation dose, conventional 

dosimetry approaches are not always relevant for microbeam exposures when used for single 

cell or sub-cellular targeting. The dosimetry for the microbeam facilities is usually reported in 

terms of the number of photons/ions delivered to a specific biological target. The delivered 

dose depends on the particle species, energy along with detector efficiency and geometric 

characteristics of the cell (Folkard et al. 2001b). The timescale throughout which the 

radiation is delivered is also an important parameter, particularly for new radiation sources 

able to deliver high fluxes of radiation.  

However, the number of particles (or photons) delivered to the target of interest is only the 

first dosimetric measurement which has its main advantages in a direct and relatively 

straightforward comparison of the samples irradiation record. In order to relate the radiation 

responses measured with microbeams to conventional radiation exposures, it is important to 

estimate the energy deposited in individual cells or specific sub-cellular targets. Such 

calculations require the number of radiation events experienced by the cell together with 

information about the cell geometry and radiation energy. Difficulties in defining the volume 

(and therefore mass) of interest makes it hard to report such dosimetry assessment in terms of 

macroscopic dose measurements (i.e. Gy) and has led to definition of parameters such as 

‘specific dose’ which characterises the dose deposited in specific cellular sub-components 

(Randers-Pehrson 2002).  

The dosimetry for synchrotron based microbeams is more complex and requires aspects of 

spectrum verification (Crosbie et al. 2015) and absolute dose measurements at ultra-high dose 

rates (Fournier et al. 2016). Standard protocols for high resolution Gafchromic film 

measurements in combination with microscopy have been used with an accuracy of better 

than 5% for the peak dose and between 10% and 15% for the valley doses (Bartzsch et al. 

2015; Bräuer-Krisch et al. 2015). For MRT, the dose to a large macroscopic volume is 

Acc
ep

te
d 

M
an

us
cr

ipt

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 2

3:
01

 0
9 

Ja
nu

ar
y 

20
18

 



usually reported together with information about the size of the microbeams, the gap between 

the microbeams and the ratio of peak-to-valley dose (i.e. dose in the centre of microbeam 

compared to dose in the gap between the microbeams). Assessment of the dose in such small 

volumes is challenging and requires dedicated protocols and tools. A variety of detectors 

have been investigated for dosimetry assessment in synchrotron microbeams  with each 

presenting both limitations and advantages (Bräuer-Krisch et al. 2010), (Alagoz et al. 2016), 

(Gagliardi et al. 2015), (Okada et al. 2011).  

 

5. Cellular and tissue effects  

The main focus of research conducted into the effects of ionising radiation on cells has 

focused on the damage to the cell nucleus and the detrimental effects this has on the cell. 

Much of radiation biology and radiotherapy builds on the assumption that a high enough dose 

of energy deposited to the nucleus will ultimately lead to cell death. Within this dogma the 

cytoplasm, the cellular environment in which most cellular processes take place, has rarely 

been taken into account. With the development of microbeam facilities, the role of the 

cytoplasm in radiation-induced biological responses became increasingly important in studies 

of cytoplasm targeted reactions (Walsh et al. 2017), bystander cellular responses, (Tartier et 

al. 2007) and in interactions with gold nanoparticles (Ghita et al. 2017). 

 

Subcellular Targeting 

The strength of the micro-irradiation technique lies in its ability to deliver precise doses of 

radiation to selected individual cells in vitro or to preselected targets within cells. The 

development of microbeams has allowed further dissection of cellular and molecular events 

in various experiments for DNA damage and repair (Kashino et al. 2004; Tartier et al. 2007; 

Richard et al. 2011; Ghita et al. 2017; Walsh et al. 2017). These studies have made use of 
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advances in microscopy to quantify the radiation induced stress at different subcellular levels 

and have made a significant impact on the understanding of mechanistic radiation responses 

in cells. Also, single cell approaches have also been very useful in establishing the radiation 

risks related to the crossing of a single  and a precise number of  α particles (Miller et al. 

1999) and (Hei et al. 1997). 

Microbeam technology has led the way to further innovation investigating cellular targeting 

and responses in cells but other approaches have also played a role. For example, studies 

using Auger electron emitters targeted to different cellular compartments tested their 

potential to induce non-targeted effects. The induction of these effects was found to be 

equally potent whether the Auger emitter was located in the cell membrane, in the cytoplasm 

or in the nucleus of the donor cells (Paillas et al. 2016). Although most of these studies agree 

on DNA being the most radiosensitive target, other cellular compartments also seem to be 

involved in both effects, especially the cell membrane (Kassis 2004; Pouget et al. 2008; 

Kassis 2011; Paillas et al. 2016). 

During the past 10 years, there has been a shift away from a totally DNA-centric approach to 

include models that invoke complex signalling pathways in cells and between cells within 

tissues. Several newly recognised responses have been classified as so-called non-targeted 

responses (Tartier et al. 2007) in which biological effects are not directly related to the 

amount of energy deposited in the DNA of the cells traversed by the radiation.  

Intercellular Communication 

A major shift in our thinking about radiation effects has taken place with the finding that non-

irradiated cells can respond biologically when their neighbours are irradiated, referred to as 

bystander responses. The ability to select individual cells or regions of tissues for localized 

irradiation is key to determining the role of intra- and intercellular signalling, and in depth 

reviews have been focusing on this aspect for in vitro work (Prise et al. 2010; Prise et al 
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1998; G Schettino et al. 2010). The development of single cell microbeams facilitated the 

evaluation of in vitro oncongenic potential in the bystander cell populations (Sawant et al. 

2001). A similar approach was used to analyse the biological response in non-targeted cell 

populations relative to microbeam irradiated cells (Ponnaiya et al. 2004). 

A recent study investigated the cell death and cell-cycle arrest of microbeam-irradiated cells 

and adjacent non-irradiated bystander cells in a human HeLa-Fucci spheroid culture with 

time-lapse imaging (Kaminaga et al. 2016). To our knowledge, this was the first real-time 

imaging of the dynamics of microbeam-irradiated and non-irradiated bystander cells. This 

was further developed in a study showing radiation-induced pro-inflammatory responses, 

including signalling in the NF-κB-COX-2 pathway, in a human 3-D organotypic skin culture 

exposed to modified X-ray fields (Acheva et al 2017).  

However, experiments with cell monolayers and single cell irradiation do not take into 

account the complex cellular responses at the tissue level. Progression to 3D models can 

reproduce many of the tissue characteristics in vivo are therefore ideal targets for studying 

non-targeted effects using microbeams  (Durante & Friedl 2011). 

Advanced Tissue Models 

Extending the present two-dimensional (2D) cell culture results to more complex models has 

been an important area of development for microbeam research. In recent years, 3D culture 

methods, such as spheroid cultures (i.e., small aggregates of cells growing free of foreign 

materials) (Fennema et al. 2013; Ishiguro et al. 2017) and organoid technologies (i.e., stem 

cell-derived 3-D cultures) (Lancaster & Knoblich 2014), have been developed to preserve the 

biological characteristics of the original tissues or organs better than conventional 2D 

monolayer cultures. This progress could contribute to the elucidation of the molecular 

mechanisms of radiation-induced bystander responses at the tissue level and has potential for 

Acc
ep

te
d 

M
an

us
cr

ipt

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 2

3:
01

 0
9 

Ja
nu

ar
y 

20
18

 



the development of new diagnostic and therapeutic radiation techniques (Belyakov et al. 

2001; Belyakov et al. 2006), (Buonanno et al. 2015; Peng et al. 2017).  

More in vivo-like culture methods, such as ex vivo tissue and organ cultures, also have 

potential as useful tools for microbeam research. Organotypic tumour tissue slice methods 

optimized for ex vivo culture would be useful for assessing not only tumour-specific drug 

responses but also microbeam-induced bystander responses (Vaira et al. 2010; Naipal et al. 

2016). Some ex vivo organ culture techniques (e.g., human hair follicle (Langan et al. 2015), 

mouse testis (Sato et al. 2011)) are likely to be applicable to microbeam research.  

Although traditionally hampered by the limited range of particles and photons used, animal 

models are now also being used in microbeam studies using a single microbeam. So far, these 

studies focused on very small animals, such as silkworms (Fukamoto et al. 2007) and 

nematodes (A Bertucci et al. 2009) but can provide important insights on long-range non-

targeted effects, beyond the possibility of 3D tissue targets (Durante & Friedl 2011).  

Single microbeam approaches for targeting individual cells offer the possibility to follow the 

cellular processes in real-time post irradiation. A future advance will be to translate these 

approaches into in vivo models, particularly to investigate low dose biological consequences. 

Ideally, these studies need to consider both spatial and temporal responses from cellular r to 

functional biological changes (Schettino et al. 2010).  

Preclinical applications of MRT 

Finally, moving beyond mechanistic studies, synchrotron MRT has shown high therapeutic 

potential in small animal models of malignant brain tumours with a preferential effect on 

intracerebral 9L gliosarcoma vascular networks (Bouchet et al. 2010; Crosbie et al. 2010). In 

this context a recent study (Fernandez-Palomo et al. 2015) interrogated γH2AX as a 

biomarker for dose deposition in the brain after synchrotron microbeam irradiation. This 
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study shows a direct correlation between the irradiation dose and induced foci for entry doses 

up to 350 Gy. Furthermore, a correlation between the microbeam foci track width and 

dissection time was observed at the highest dose with no significant change in the width of 

the microbeam tracks seen at lower irradiation doses. This suggests that radiation induced 

bystander effects have an impact on the cells exposed to both the high-peak doses and the 

dose gradient of the transition zone (Fernandez-Palomo, Bräuer-Krisch, et al. 2015).  

As a comparison, different DNA damage patterns after irradiation with 2 Gy using C soft X-

ray of a 2D monolayer is shown in figure 3a and 3b. In an in vivo setup, DNA damage 

induced after synchrotron irradiation of mouse cerebellum with an entry-dose of 350 Gy is 

shown in figure 3c and 3d (Fernandez-Palomo et al. 2015).   

 

6. Clinical translation for therapy developments 

Microbeam radiation therapy (MRT), an innovative pre-clinical radiotherapy technique using 

spatially fractionated synchrotron X-rays, has been shown to spare radiosensitive tissues such 

as mammal brains (Serduc et al. 2008; Bouchet et al. 2016). In MRT the tumour is irradiated 

by arrays of micrometre wide planar beams of unconventionally high doses of up to a few 

hundred Gy that are separated by several hundred micrometre wide low dose regions (Bräuer-

Krisch et al. 2005). The major benefit of MRT over conventional radiotherapy approaches is 

associated with the dose volume effect where the utilization of a micrometre-scale treatment 

beam width leads to a higher radiation tolerance of normal tissue compared to tumour tissue 

(Bouchet et al. 2010), (Schültke et al. 2017; Serduc et al. 2008). Pre-clinical studies have 

demonstrated this advantage in several animal models, such as weanling piglets, duck 

embryos, and suckling and adult rats (Slatkin et al. 1995; Laissue et al. 1999; Dilmanian et al. 

2002; Dilmanian et al. 2003; Dilmanian et al. 2005; Serduc et al. 2009; Van Der Sanden et al. 

2010; Laissue et al. 2013; Bouchet et al. 2014). The skin has also been shown to tolerate 
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doses of 835-1335 Gy very well in MRT, far above of those used in pre-clinical studies (350 

Gy) (Zhong et al. 2003). Moreover, the acute effects on skin produced by high MRT doses 

were similar to the effects of low doses of broad beam (Priyadarshika et al. 2011). Thus, the 

organ tolerance, particularly of the normal brain, could allow re-irradiation of the tumour. 

MRT in small animal models has achieved therapeutic ratios clearly exceeding those obtained 

by homogeneous dose distributions delivered using conformal preclinical radiotherapy in a 

range of malignancies (Grotzer et al. 2015). Currently, the production of clinical microbeams 

can only be facilitated at large synchrotron facilities like the European Synchrotron (ESRF) 

in Grenoble and the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron, 

due to the high beam flux and quality requirements. However, the possibility to use a 

conventional X-ray tube or carbon nanotubes (S. Wang et al. 2011) to produce microbeams 

for preclinical studies has also been explored. This study used an X-ray tube with a small 

focal spot and a specially designed collimator were used to produce microbeams for 

preclinical research (Bartzsch et al. 2016).  

The growing interest in bright monochromatic and tuneable X-ray sources for use in imaging 

and radiation therapy has led to the collaboration of seven research institutes and industry 

partners in the ThomX project, to develop a compact Compton Backscattering Source (CBS) 

based in Orsay – France (Variola et al. 2014). The project aims to provide a fully operational 

hard X-ray CBS upgradable to be operated with a relatively reduced cost (Alagoz et al. 2016). 

Another recent study proposes another novel technical solution of line focus X-ray tubes, 

with the aim of clinical translation of MRT (Bartzsch & Oelfke 2017). Long term, this might 

enable the development of clinical microbeams without the need of a synchrotron.  

Various biological mechanisms have been suggested to explain MRT’s effectiveness. Strong 

evidence indicating that the different repair efficiencies of blood vessels in malignant and 
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healthy tissue is a key factor in explaining the differential effect of microbeams (Bouchet et 

al. 2010). 

Given the clinical potential of MRT, robust normal tissue toxicity data, especially pre-clinical 

depth-dose data, must be collected in order to successfully translate these therapies to human 

clinical trials. While previous work employed computational modelling (Merrem et al. 2017), 

a lack of robust reference data means that further experimental studies on the geometric 

properties of vascular networks are necessary to improve the predictions of the model. 

Previous reviews summarized the available normal tissue toxicity data from MRT animal 

studies and have considered how they relate to current normal tissue toxicity data and clinical 

dose constraints (Smyth et al. 2016). Furthermore, a novel treatment planning environment 

for synchrotron MRT has been developed based on the Eclipse™ treatment planning system 

(Poole et al. 2017). This is an essential step in MRT progression towards human clinical 

trials, as it is necessary that MRT not only meets current clinical standards but also has 

similarity with all stages of the radiotherapy process (Grotzer et al. 2015).  

As part of the development of a clinical case for MRT, candidate populations for potential 

clinical trials have been discussed. Two key sites, in adults with glioblastoma multiforme and 

in paediatric patients with diffuse intrinsic pontine glioma, have been identified (Grotzer et 

al. 2015).  

The phase 1 clinical trials in Synchrotron Stereotactic Radiotherapy (SSRT) have allowed the 

community to move forward with synchrotron based therapies requiring the implementation 

of a small hospital like environment at the biomedical beamline ID17 at the ESRF. With the 

SSRT clinical trial it will be possible to refine a protocol for dose enhancement using high Z 

elements in combination with low energy synchrotron X-rays. This can also be further 

exploited to improve the tumour control probability (TCP) in MRT (Bräuer-Krisch et al. 

2015; Grotzer et al. 2015).  
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7. Summary and future directions 

Microbeams have played a pivotal role in radiobiology. In its early days, the technology 

aimed to explore basic radiobiological effects after cellular irradiation. With the ongoing 

evolution of the field, microbeams have been refined to assess a range of responses after 

irradiation with X-ray or charged particles. The main advantage of the technology, the very 

controlled irradiation of micron-sized areas of tissue, has initiated novel research avenues 

beyond the investigation of the underlying mechanisms of radiotherapy. Microbeam 

technology has also served as the underpinning for MRT - a technique with the potential to 

impact the clinical landscape. Since the first reports using very small targeted radiation 

beams, the theoretical possibility of radiosurgery by irradiating parallel arrays of micro slices 

and cross-fired through tumours from several ports has attracted the attention of several 

groups internationally.  

While the MRT concept has also been extended to proton  heavy ion therapies, the 

development towards its clinical implementation is still a focus of radiation therapy 

programmes aiming towards its integration in the hospital environment (Bravin et al. 2015). 

With the increased number of potential applications of these technologies, novel technical 

and medical physics developments are key to further implement these methods into a clinical 

environment.  
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Figure 1 Key accessories for a single cell irradiation a microbeam  
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Figure 2 Calculated lateral normalized dose profile for classical microbeam irradiation showing very steep dose gradients 
between peak doses and low doses delivered in the dose-valley regions.  
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Table 1 Updated list of particle microbeam facilities after (Barberet & Seznec 2015) 

Facility Particle Energy Range Reference 

RARAF Columbia 

University 

Protons, α 1-5 MeV Randers-Pehrson et al 1996 

(Buonanno et al. 2015) 

SPICE NIRS Chiba Protons 3.4 MeV Konishi et al 2013 (Konishi et 

al. 2013) 

Ion Beam Centre Surrey  Protons, α, up to Ca 1-12 MeV  Merchant et al 2012 

(Merchant et al. 2012) 

IMP Fudan Protons, α 6 MeV  Wang et al 2011 (X.F. Wang et 

al. 2011) 

CENBG Bordeaux Protons, α 1-3.5 MeV Bourret et al 2014 (Bourret et 

al. 2014) 

PTB Braunschweig Protons, α 2-20 MeV Mosconi et al 2011 (Mosconi 

et al. 2011) 

Patrono et al 2015 ((Patrono 

et al. 2015) 

RIKEN Wako Protons, α 3-4 MeV Iwai et al 2008 (Iwai et al. 

2008) 

SNAKE Munich Protons, α, Li, O, Si, 

Cl, I 

4-28 MeV 

1-10.5 MeV u-1 

Hauptner et al 2004 (Dollinger 

et al. 2005) 

Drexler et al 2015 (Drexler & 

Ruiz-Gómez 2015) 

GSI Darmstadt Protons, α, C to U 1.4-11.4 MeV u-1 Heiss et al 2006 (Heiss et al. 

2006) 

Jaeri Takasaki  Α, C, Ne, Ar 12.5-17.5 MeV u-1 Funayama et al 2005 

(Funayama et al. 2005) 

Leipzig H, He 2.25 MeV Butz el al 2000 (Butz et al. 

2000) 
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Table 2 An updated list for X-ray microbeam facilities 

Facility Energy Range Reference 

Columbia University  Ti soft X-ray 4.5 

keV 

Harken et al 2011 (Harken et al. 

2011) 

Brookhaven National 

Laboratory 

2.584 GeV Dilmanian et al  2001 

(Dilmanian et al. 2003) 

Queen’s University Belfast  K-shell C soft X-

ray 287 eV 

 Folkard et al 1997 (Folkard et 

al. 2001b) 

M. Ghita et al 2017 (Ghita et al. 

2017) 

European Synchrotron (ESRF), 

Grenoble 

27-600 keV Alagoz et al 2016 (Alagoz et al. 

2016) 

Australian Synchrotron 

Imaging and Medical Beamline 

(IMBL) 

125 keV Crosbie et al 2010 (Crosbie et 

al. 2010) 

Gagliardi et al 2015 (Gagliardi 

et al. 2015) 

Institute of Cancer Research 225 kVp Bartzsch et al 2016 (Bartzsch et 

al. 2016) 

KEK IMSS Photon Factory 2.34 keV Kaminaga et al 2016 (Kaminaga 

et al. 2016) 

 

 

Electron microbeam 

Pacific Northwest 

National Laboratory  

Electrons Variable energy Sowa et al 2005 (Sowa et al. 

2005) 
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Figure 3 Different magnitude of biological effects measured using γH2AX used as a DNA damage marker after microbeam 
irradiation using C K-shell Soft X-ray used a) in scanning mode and b) with a dose of 2 Gy measured and delivered to cell 
nucleus in the outlined region; synchrotron X-ray used to target the cerebellum in c) and d), with an entrance dose of 350 Gy  
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