379 research outputs found

    Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power

    Get PDF
    We report on a high-power ytterbium doped photonic crystal fiber amplifier using a single-frequency Nd:YAG non-planar ring oscillator seed source. With a large-mode-area photonic crystal fiber, operation below the threshold of stimulated Brillouin scattering is demonstrated with up to 148 W of continuous-wave output power and a slope efficiency of 75%. At maximum output power the amplified spontaneous emission was suppressed by more than 40 dB and the polarization extinction ratio was better than 22 dB. In order to investigate the overlap of the photonic crystal fiber transverse-mode with a Gaussian fundamental mode, sensitive beam quality measurements with a Fabry-Perot ring-cavity are presented

    Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors

    Get PDF
    Ultrastable high-power laser systems are essential components of the long baseline interferometers that detected the first gravitational waves from merging black holes and neutron stars. One way to further increase the sensitivity of current generation gravitational wave detectors (GWDs) is to increase the laser power injected into the interferometers. In this Letter, we describe and characterize a 72 W and a 114 W linearly polarized, single-frequency laser system at a wavelength of 1064 nm, each based on single-pass Nd:YVO4 power amplifiers. Both systems have low power and frequency noise and very high spatial purity with less than 10.7% and 2.9% higher order mode content, respectively. We demonstrate the simple integration of these amplifiers into the laser stabilization environment of operating GWDs and show stable low-noise operation of one of the amplifier systems in such an environment for more than 45 days

    Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN ≤ 4×10-9/surdHz) will be presented

    Drag Assessment for Boundary Layer Control Schemes with Mass Injection

    Get PDF
    The present study considers uniform blowing in turbulent boundary layers as active flow control scheme for drag reduction on airfoils. The focus lies on the important question of how to quantify the drag reduction potential of this control scheme correctly. It is demonstrated that mass injection causes the body drag (the drag resulting from the stresses on the body) to differ from the wake survey drag (the momentum deficit in the wake of an airfoil), which is classically used in experiments as a surrogate for the former. This difference is related to the boundary layer control (BLC) penalty, an unavoidable drag portion which reflects the effort of a mass-injecting boundary layer control scheme. This is independent of how the control is implemented. With an integral momentum budget, we show that for the present control scheme, the wake survey drag contains the BLC penalty and is thus a measure for the inclusive drag of the airfoil, i.e. the one required to determine net drag reduction. The concept of the inclusive drag is extended also to boundary layers using the von Karman equation. This means that with mass injection the friction drag only is not sufficient to assess drag reduction also in canonical flows. Large Eddy Simulations and Reynolds-averaged Navier-Stokes simulations of the flow around airfoils are utilized to demonstrate the significance of this distinction for the scheme of uniform blowing. When the inclusive drag is properly accounted for, control scenarios previously considered to yield drag reduction actually show drag increase

    Stabilized lasers for advanced gravitational wave detectors

    Get PDF
    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

    Stabilized high-power laser system for the gravitational wave detector advanced LIGO

    Get PDF
    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments

    Single-sensor control of LCL-filtered grid-connected inverters

    Get PDF

    NFKB1 regulates human NK cell maturation and effector functions

    Get PDF
    12siopenopenLougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W.M.; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, AlessandroLougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W. M.; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, Alessandr

    Qualitative description – the poor cousin of health research?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge and use of qualitative description as a qualitative research approach in health services research is limited.</p> <p>The aim of this article is to discuss the potential benefits of a qualitative descriptive approach, to identify its strengths and weaknesses and to provide examples of use.</p> <p>Discussion</p> <p>Qualitative description is a useful qualitative method in much medical research if you keep the limitations of the approach in mind. It is especially relevant in mixed method research, in questionnaire development and in research projects aiming to gain firsthand knowledge of patients', relatives' or professionals' experiences with a particular topic. Another great advantage of the method is that it is suitable if time or resources are limited.</p> <p>Summary</p> <p>As a consequence of the growth in qualitative research in the health sciences, researchers sometimes feel obliged to designate their work as phenomenology, grounded theory, ethnography or a narrative study when in fact it is not. Qualitative description might be a useful alternative approach to consider.</p

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
    • …
    corecore