19 research outputs found

    CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation

    Get PDF
    The detection of curvilinear structures in medical images, e.g., blood vessels or nerve fibers, is important in aiding management of many diseases. In this work, we propose a general unifying curvilinear structure segmentation network that works on different medical imaging modalities: optical coherence tomography angiography (OCT-A), color fundus image, and corneal confocal microscopy (CCM). Instead of the U-Net based convolutional neural network, we propose a novel network (CS-Net) which includes a self-attention mechanism in the encoder and decoder. Two types of attention modules are utilized - spatial attention and channel attention, to further integrate local features with their global dependencies adaptively. The proposed network has been validated on five datasets: two color fundus datasets, two corneal nerve datasets and one OCT-A dataset. Experimental results show that our method outperforms state-of-the-art methods, for example, sensitivities of corneal nerve fiber segmentation were at least 2% higher than the competitors. As a complementary output, we made manual annotations of two corneal nerve datasets which have been released for public access

    Seeing Tree Structure from Vibration

    Full text link
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://tree.csail.mit.edu

    An Elastic Interaction-Based Loss Function for Medical Image Segmentation

    Full text link
    Deep learning techniques have shown their success in medical image segmentation since they are easy to manipulate and robust to various types of datasets. The commonly used loss functions in the deep segmentation task are pixel-wise loss functions. This results in a bottleneck for these models to achieve high precision for complicated structures in biomedical images. For example, the predicted small blood vessels in retinal images are often disconnected or even missed under the supervision of the pixel-wise losses. This paper addresses this problem by introducing a long-range elastic interaction-based training strategy. In this strategy, convolutional neural network (CNN) learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object. Under the supervision of the proposed loss, the boundary of the predicted region is attracted strongly by the object boundary and tends to stay connected. Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions (cross entropy and dice Loss) and other recent loss functions on three retinal vessel segmentation datasets, DRIVE, STARE and CHASEDB1

    The Unreasonable Effectiveness of Encoder-Decoder Networks for Retinal Vessel Segmentation

    Full text link
    We propose an encoder-decoder framework for the segmentation of blood vessels in retinal images that relies on the extraction of large-scale patches at multiple image-scales during training. Experiments on three fundus image datasets demonstrate that this approach achieves state-of-the-art results and can be implemented using a simple and efficient fully-convolutional network with a parameter count of less than 0.8M. Furthermore, we show that this framework - called VLight - avoids overfitting to specific training images and generalizes well across different datasets, which makes it highly suitable for real-world applications where robustness, accuracy as well as low inference time on high-resolution fundus images is required

    Animals in biomedical research : towards a more compassionate approach

    No full text
    The development of novel biosensors and other medical devices often implies extensive animal testing before the final phases of product development are reached. Most products do not reach the market. On the other hand, natural disease in companion animals often mirrors disease processes in humans, being a more accurate representation of the complexity of disease processes than laboratory animals. These are poor models of genetic variability, environmental exposure influence and often, pathophysiology. In this chapter, possible strategies for biomedical research that are based on a more compassionate approach are discussed, tapping on the enormous potential of comparative medicine for beneficing both humans and animals.5F1C-9D14-387E | Joana Margarida Ferreira da Costa Reisinfo:eu-repo/semantics/publishedVersio

    Seeing Tree Structure from Vibration

    No full text
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.NSF (Grants 1231216, 1212849 and 1447476)ONR MURI (Grant N00014-16-1-2007
    corecore