615 research outputs found

    PAK in Alzheimer disease, Huntington disease and X-linked mental retardation.

    Get PDF
    Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR

    A REVIEW OF PROGRAMS TO SUPPORT FOSTER PARENTS IN IMPLEMENTING LANGUAGE DEVELOPMENT STRATEGIES

    Get PDF
    Young children in foster care are at a higher risk for communication delays than are children in stable households. Educating foster parents in language development strategies is one way to prevent later language delays and/or disorders. This scoping review examined empirical studies including training or educational programs for foster parents. Each study was coded for the following: (a) study design; (b) participant information; (c) intervention strategies targeted; (d) intended outcomes for the child in foster care; and (d) the techniques used to teach foster parents the targeted intervention strategies. The results of this review may support researchers and other professionals in designing interventions that not only support the general development and mental health of children in foster care, but also successfully enhance language development, preventing further language delays or disorders as well as later difficulties in academics and beyond

    What was lost in translation in the DHA trial is whom you should intend to treat

    Get PDF
    The results of a randomized double-blind placebocontrolled trial with docosahexaenoic acid (DHA) supplementation in mild to moderate Alzheimer's disease (AD) published by Quinn and colleagues in JAMA argues against overall efficacy of DHA in slowing progression. However, certain caveats in the results caution against discarding DHA altogether, raising questions about oxidation, dosage, pharmacogenomics and stage of intervention

    A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease.

    Get PDF
    Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics

    Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study

    Get PDF
    Introduction: Curcumin is a polyphenolic compound derived from the plant Curcuma Long Lin that has been demonstrated to have antioxidant and anti-inflammatory effects as well as effects on reducing beta-amyloid aggregation. It reduces pathology in transgenic models of Alzheimer's disease (AD) and is a promising candidate for treating human AD. The purpose of the current study is to generate tolerability and preliminary clinical and biomarker efficacy data on curcumin in persons with AD. Methods: We performed a 24-week randomized, double blind, placebo-controlled study of Curcumin C3 Complex® with an open-label extension to 48 weeks. Thirty-six persons with mild-to-moderate AD were randomized to receive placebo, 2 grams/day, or 4 grams/day of oral curcumin for 24 weeks. For weeks 24 through 48, subjects that were receiving curcumin continued with the same dose, while subjects previously receiving placebo were randomized in a 1:1 ratio to 2 grams/day or 4 grams/day. The primary outcome measures were incidence of adverse events, changes in clinical laboratory tests and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) at 24 weeks in those completing the study. Secondary outcome measures included the Neuropsychiatric Inventory (NPI), the Alzheimer's Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) scale, levels of Aβ1-40 and Aβ1-42 in plasma and levels of Aβ1-42, t-tau, p-tau181 and F2-isoprostanes in cerebrospinal fluid. Plasma levels of curcumin and its metabolites up to four hours after drug administration were also measured. Results: Mean age of completers (n = 30) was 73.5 years and mean Mini-Mental Status Examination (MMSE) score was 22.5. One subject withdrew in the placebo (8%, worsened memory) and 5/24 subjects withdrew in the curcumin group (21%, 3 due to gastrointestinal symptoms). Curcumin C3 Complex® was associated with lowered hematocrit and increased glucose levels that were clinically insignificant. There were no differences between treatment groups in clinical or biomarker efficacy measures. The levels of native curcumin measured in plasma were low (7.32 ng/mL). Conclusions: Curcumin was generally well-tolerated although three subjects on curcumin withdrew due to gastrointestinal symptoms. We were unable to demonstrate clinical or biochemical evidence of efficacy of Curcumin C3 Complex® in AD in this 24-week placebo-controlled trial although preliminary data suggest limited bioavailability of this compound. Trial registration ClinicalTrials.gov Identifier: NCT00099710

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes

    Get PDF
    The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease) and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide) treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein)/PS1 (presenilin 1) Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein) and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B

    Employee satisfaction and theft: Testing climate perceptions as a mediato, The

    Get PDF
    ABSTRACT. Employee theft of both property and time is an expensive and pervasive problem for American organizations. One antecedent of theft behaviors is employee dissatisfaction, but not all dissatisfied employees engage in withdrawal or theft behaviors. The authors tested a model of theft behavior by using an organization's climate for theft as an explanatory mechanism. They found that dissatisfaction influenced employee theft behaviors through the intermediary influence of employees' individual perceptions of the organization's climate for theft. The authors encourage organizations to pay attention to such climate elements and take action to alter employee perceptions if they reflect permissive attitudes toward theft

    Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>No disease modifying treatment currently exists for Huntington's disease (HD), a fatal neurodegenerative disorder characterized by the formation of amyloid-like aggregates of the mutated huntingtin protein. Curcumin is a naturally occurring polyphenolic compound with Congo red-like amyloid binding properties and the ability to cross the blood brain barrier. CAG140 mice, a knock-in (KI) mouse model of HD, display abnormal aggregates of mutant huntingtin and striatal transcriptional deficits, as well as early motor, cognitive and affective abnormalities, many months prior to exhibiting spontaneous gait deficits, decreased striatal volume, and neuronal loss. We have examined the ability of life-long dietary curcumin to improve the early pathological phenotype of CAG140 mice.</p> <p>Results</p> <p>KI mice fed a curcumin-containing diet since conception showed decreased huntingtin aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an amelioration of rearing deficits. However, similar to other antioxidants, curcumin impaired rotarod behavior in both WT and KI mice and climbing in WT mice. These behavioral effects were also noted in WT C57Bl/6 J mice exposed to the same curcumin regime as adults. However, neither locomotor function, behavioral despair, muscle strength or food utilization were affected by curcumin in this latter study. The clinical significance of curcumin's impairment of motor performance in mice remains unclear because curcumin has an excellent blood chemistry and adverse event safety profile, even in the elderly and in patients with Alzheimer's disease.</p> <p>Conclusion</p> <p>Together with this clinical experience, the improvement in several transgene-dependent parameters by curcumin in our study supports a net beneficial effect of dietary curcumin in HD.</p
    corecore