4,712 research outputs found

    Gas circulation and galaxy evolution

    Full text link
    Galaxies must form and evolve via the acquisition of gas from the intergalactic environment, however the way this gas accretion takes place is still poorly understood. Star-forming galaxies are surrounded by multiphase halos that appear to be mostly produced by internal processes, e.g., galactic fountains. However, a small fraction of the halo gas shows features that point to an external origin. Estimates of the halo-gas accretion rate in the local Universe consistently give values much lower than what would be required to sustain star formation at the observed rate. Thus, most of the gas accretion must be "hidden" and not seen directly. I discuss possible mechanisms that can cause the intergalactic gas to cool and join the star-forming galactic disks. A possibility is that gas accretion is driven by the galactic-fountain process via turbulent mixing of the fountain gas with the coronal low-metallicity gas.Comment: 12 pages, 5 figures. Invited review at the conference "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009. Eds. V.P. Debattista and C.C. Popescu, AIP Conf. Se

    The Galactic fountain as an origin for the Smith Cloud

    Get PDF
    The recent discovery of an enriched metallicity for the Smith high-velocity HI cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the cloud's cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology we explore two scenarios: a) the outflow is inclined with respect to the vertical direction; b) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40 deg while the latter requires >1000 km/s winds. All scenarios predict that the SC is in the ascending phase of its trajectory and have large - but not implausible - energy requirements.Comment: Submitted to MNRAS letters, revised after referee's comments. Comments are welcom

    Angular momentum, accretion and radial flows in chemodynamical models of spiral galaxies

    Get PDF
    Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows, due to angular momentum conservation) and should therefore be modelled simultaneously. We summarise an algorithm that can be used to consistently compute accretion profiles, radial flows and abundance gradients under quite general conditions and we describe illustrative applications to the Milky Way. We find that gas-phase abundance gradients strongly depend on the angular momentum of the accreting material and, in the outer regions, they are significantly affected by the choice of boundary conditions.Comment: 4 pages, 2 figures. Proceedings of the 592 WE-Heraeus Seminar. To appear in Astronomische Nachricthen, special issue "Reconstructing the Milky Way's history: spectroscopic surveys, asteroseismology and chemodynamical models", Guest Editors C. Chiappini, J. Montalban and M. Steffe

    Dynamics of Starbursting Dwarf Galaxies. III. A HI study of 18 nearby objects

    Get PDF
    We investigate the dynamics of starbursting dwarf galaxies, using both new and archival HI observations. We consider 18 nearby galaxies that have been resolved into single stars by HST observations, providing their star formation history and total stellar mass. We find that 9 objects have a regularly-rotating HI disk, 7 have a kinematically disturbed HI disk, and 2 show unsettled HI distributions. Two galaxies (NGC 5253 and UGC 6456) show a velocity gradient along the minor axis of the HI disk, that we interpret as strong radial motions. For galaxies with a regularly rotating disk we derive rotation curves, while for galaxies with a kinematically disturbed disk we estimate the rotation velocities in their outer parts. We derive baryonic fractions within about 3 optical scale lengths and find that, on average, baryons constitute at least 30%\% of the total mass. Despite the star formation having injected \sim1056^{56} ergs in the ISM in the last \sim500 Myr, these starbursting dwarfs have both baryonic and gas fractions similar to those of typical dwarf irregulars, suggesting that they did not eject a large amount of gas out of their potential wells.Comment: Published on A&A (23 pages, 9 tables, 12 figures, plus an optical-HI atlas). Typos fixe

    On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms

    Full text link
    We study the geometrically nonlinear behavior of uniformly compressed tensegrity prisms, through fully elastic and rigid--elastic models. The presented models predict a variety of mechanical behaviors in the regime of large displacements, including an extreme stiffening-type response, already known in the literature, and a newly discovered, extreme softening behavior. The latter may lead to a snap buckling event producing an axial collapse of the structure. The switching from one mechanical regime to another depends on the aspect ratio of the structure, the magnitude of the applied prestress, and the material properties of the constituent elements. We discuss potential acoustic applications of such behaviors, which are related to the design and manufacture of tensegrity lattices and innovative phononic crystals

    Efficiency of gas cooling and accretion at the disc-corona interface

    Get PDF
    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ~ 10^6 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 10^13 Msun. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (Mvir <~ 3 x 10^12 Msun) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    On the compact wave dynamics of tensegrity beams in multiple dimensions

    Full text link
    This work presents a numerical investigation on the nonlinear wave dynamics of tensegrity beams in 1D, 2D and 3D arrangements. The simulation of impact loading on a chain of tensegrity prisms and lumped masses allows us to apply on a smaller scale recent results on the propagation of compression solitary waves in 1D tensegrity metamaterials. Novel results on the wave dynamics of 2D and 3D beams reveal - for the first time - the presence of compact compression waves in two- and three-dimensional tensegrity lattices with slender aspect ratio. The dynamics of such systems is characterized by the thermalization of the lattice nearby the impacted regions of the boundary. The portion of the absorbed energy moving along the longitudinal direction is transported by compression waves with compact support. Such waves emerge with nearly constant speed, and slight modifications of their spatial shape and amplitude, after collisions with compression waves traveling in opposite direction. The analyzed behaviors suggest the use of multidimensional tensegrity lattices for the design and additive manufacturing of novel sound focusing devices

    Galactic fountains and the rotation of disc-galaxy coronae

    Get PDF
    In galaxies like the Milky Way, cold (~ 10^4 K) gas ejected from the disc by stellar activity (the so-called galactic-fountain gas) is expected to interact with the virial-temperature (~ 10^6 K) gas of the corona. The associated transfer of momentum between cold and hot gas has important consequences for the dynamics of both gas phases. We quantify the effects of such an interaction using hydrodynamical simulations of cold clouds travelling through a hot medium at different relative velocities. Our main finding is that there is a velocity threshold between clouds and corona, of about 75 km/s, below which the hot gas ceases to absorb momentum from the cold clouds. It follows that in a disc galaxy like the Milky Way a static corona would be rapidly accelerated: the corona is expected to rotate and to lag, in the inner regions, by ~ 80-120 km/s with respect to the cold disc. We also show how the existence of this velocity threshold can explain the observed kinematics of the cold extra-planar gas.Comment: 10 pages, 6 figures, 1 table. Accepted for publication in MNRAS. Several typos correcte

    Estimating snow cover from publicly available images

    Get PDF
    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to such sources, addressing the specific challenges posed by each of them, e.g., identifying the mountain peaks, filtering out images taken in bad weather conditions, handling varying illumination conditions. The final outcome is summarized in a snow cover index, which indicates for a specific mountain and day of the year, the fraction of visible area covered by snow, possibly at different elevations. We created a manually labelled dataset to assess the accuracy of the image snow covered area estimation, achieving 90.0% precision at 91.1% recall. In addition, we show that seasonal trends related to air temperature are captured by the snow cover index.Comment: submitted to IEEE Transactions on Multimedi
    corecore