893 research outputs found

    Detection and Enhancement of Ketocarotenoid Accumulation in the Newly Isolated Sarcinoid Green Microalga Chlorosarcinopsis PY02

    Get PDF
    The sarcinoid alga PY02 is a newly isolated soil alga native to western Thailand. In this study PY02 is described, the carotenoid profile of the green and red forms of the algal cells are compared, and the effect of nitrogen reduction and media volume on ketocarotenoid production are reported. Partial sequences of the genes from elongation factor Tu (tufA) and 18S rRNA reveal that the alga is from theChlorosarcinopsisgenus. Growth studies demonstrated thatChlorosarcinopsisPY02 is capable of photoautotrophic, heterotrophic and mixotrophic growth. A gradual change in colony colour from green to red was observed over a period of four weeks under mixotrophic conditions. Pigment analysis of lyophilized red cells using ultrahigh performance liquid chromatography (UPLC) with Photo Diode Array Detection (PDA), showed for the first time that an alga from the genusChlorosarcinopsisis capable of producing ketocarotenoids such as adonixanthin and 3-OH-echinenone, with canthaxanthin as the dominant pigment. Interestingly, a reduction of nitrogen in the medium exerts a positive effect on the rate of colour change from one month to less than seven days. Enhancements of the canthaxanthin content from 520 to 1504 or 1427 µg·gDW-1were detected under 50% and 10% nitrogen content, respectively. An increase of 16% in biomass production of PY02 was unexpectedly detected from a 50% nitrogen reduction under mixotrophic culture. Notably, in liquid mixotrophic media with volumes of 15, 30 and 60 mL, the lowest volume produced a significantly higher biomass and canthaxanthin content

    Crystal structure of geranylgeranyl pyrophosphate synthase (CrtE) involved in cyanobacterial terpenoid biosynthesis

    Get PDF
    Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class of natural products with potential as advanced biofuels and high-value chemicals. However, the cyanobacterial enzymes involved in the biosynthesis of the terpene precursors needed to make more complicated terpenoids are poorly characterized. Here we show that the predicted type II prenyltransferase CrtE encoded by the model cyanobacterium Synechococcus sp. PCC 7002 is homodimeric and able to synthesize C20-geranylgeranyl pyrophosphate (GGPP) from C5-isopentenyl pyrophosphate (IPP) and C5-dimethylallyl pyrophosphate (DMAPP). The crystal structure of CrtE solved to a resolution of 2.7 Ă… revealed a strong structural similarity to the large subunit of the heterodimeric geranylgeranyl pyrophosphate synthase 1 from Arabidopsis thaliana with each subunit containing 14 helices. Using mutagenesis, we confirmed that the fourth and fifth amino acids (Met-87 and Ser-88) before the first conserved aspartate-rich motif (FARM) play important roles in controlling chain elongation. While the WT enzyme specifically produced GGPP, variants M87F and S88Y could only generate C15-farnesyl pyrophosphate (FPP), indicating that residues with large side chains obstruct product elongation. In contrast, replacement of M87 with the smaller Ala residue allowed the formation of the longer C25-geranylfarnesyl pyrophosphate (GFPP) product. Overall, our results provide new structural and functional information on the cyanobacterial CrtE enzyme that could lead to the development of improved cyanobacterial platforms for terpenoid production

    Synchrotron validation of inline coherent imaging for tracking laser keyhole depth

    Get PDF
    In situ monitoring is critical to the increasing adoption of laser powder bed fusion (LPBF) and laser welding by industry for manufacture of complex metallic components. Optical coherence tomography (OCT), an interferometric imaging technique adapted from medical applications, is now widely used for operando monitoring of morphology during high-power laser material processing. However, even in stable processing regimes, some OCT depth measurements from the keyhole (vapor cavity formed at laser beam spot) appear too shallow or too deep when compared to ex situ measurements of weld depth. It has remained unclear whether these outliers are due to imaging artifacts, multiple scattering of the imaging beam within the keyhole, or real changes in keyhole depth, making it difficult to accurately extract weld depth and determine error bounds. To provide a definitive explanation, we combine inline coherent imaging (ICI), a type of OCT, with synchrotron X-ray imaging for simultaneous, operando monitoring of the full 2-dimensional keyhole profile at high-speed (280 kHz and 140 kHz, respectively). Even in a highly turbulent pore-generation mode, the depth measured with ICI closely follows the keyhole depth extracted from radiography (>80% within ± 14 µm). Ray-tracing simulations are used to confirm that the outliers in ICI depth measurements (that significantly disagree with radiography) primarily result from multiple reflections of the imaging light (57%). Synchrotron X-ray imaging also enables tracking of bubble and pore formation events. Pores are generated during laser welding when the sidewalls of the keyhole rapidly (>10 m/s) collapse inwards, pinching off a bubble from the keyhole root and resulting in a rapid decrease in keyhole depth. Evidence of bubble formation can be found in ICI depth profiles alone, as rapid depth changes exhibit moderate correlation with bubble formation events (0.26). This work moves closer to accurate, localized defect detection during laser welding and LPBF using ICI

    Effect of floor type on the performance, physiological and behavioural responses of finishing beef steers

    Get PDF
    peer-reviewedBackground:The study objective was to investigate the effect of bare concrete slats (Control), two types of mats [(Easyfix mats (mat 1) and Irish Custom Extruder mats (mat 2)] fitted on top of concrete slats, and wood-chip to simulate deep bedding (wood-chip placed on top of a plastic membrane overlying the concrete slats) on performance, physiological and behavioral responses of finishing beef steers. One-hundred and forty-four finishing steers (503 kg; standard deviation 51.8 kg) were randomly assigned according to their breed (124 Continental cross and 20 Holstein–Friesian) and body weight to one of four treatments for 148 days. All steers were subjected to the same weighing, blood sampling (jugular venipuncture), dirt and hoof scoring pre study (day 0) and on days 23, 45, 65, 86, 107, 128 and 148 of the study. Cameras were fitted over each pen for 72 h recording over five periods and subsequent 10 min sampling scans were analysed. Results: Live weight gain and carcass characteristics were similar among treatments. The number of lesions on the hooves of the animals was greater (P < 0.05) on mats 1 and 2 and wood-chip treatments compared with the animals on the slats. Dirt scores were similar for the mat and slat treatments while the wood-chip treatment had greater dirt scores. Animals housed on either slats or wood-chip had similar lying times. The percent of animals lying was greater for animals housed on mat 1 and mat 2 compared with those housed on concrete slats and wood chips. Physiological variables showed no significant difference among treatments. Conclusions: In this exploratory study, the performance or welfare of steers was not adversely affected by slats, differing mat types or wood-chip as underfoot material

    Coastal connectivity and spatial subsidy from a microbial perspective

    Full text link
    © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. The transfer of organic material from one coastal environment to another can increase production in recipient habitats in a process known as spatial subsidy. Microorganisms drive the generation, transformation, and uptake of organic material in shallow coastal environments, but their significance in connecting coastal habitats through spatial subsidies has received limited attention. We address this by presenting a conceptual model of coastal connectivity that focuses on the flow of microbially mediated organic material in key coastal habitats. Our model suggests that it is not the difference in generation rates of organic material between coastal habitats but the amount of organic material assimilated into microbial biomass and respiration that determines the amount of material that can be exported from one coastal environment to another. Further, the flow of organic material across coastal habitats is sensitive to environmental change as this can alter microbial remineralization and respiration rates. Our model highlights microorganisms as an integral part of coastal connectivity and emphasizes the importance of including a microbial perspective in coastal connectivity studies

    Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits

    Get PDF
    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening

    Learning environment, attitudes and anxiety across the transition from primary to secondary school mathematics

    Get PDF
    Past research has revealed that, relative to primary-school students, high-school students have less-positive attitudes to mathematics and perceive their classroom environments and teacher–student relationships less favourably. This study involved the transition experience of 541 students in 47 classes in 15 primary (year 7) and secondary (year 8) government and Catholic schools in metropolitan and regional South Australia. Scales were adapted from three established instruments, namely, the What Is Happening In this Class?, Test of Mathematics Related Attitudes and Revised Mathematics Anxiety Ratings Scale, to identify changes across the transition from primary to secondary school in terms of the classroom learning environment and students’ attitude/anxiety towards mathematics. Relative to year 7 students, year 8 students reported less Involvement, less positive Attitude to Mathematical Inquiry, less Enjoyment of Mathematics and greater Mathematics Anxiety. Differences between students in Years 7 and 8 were very similar for male and female students, although the magnitude of sex differences in attitudes was slightly different in Years 7 and 8

    Self-Protective Function of Post-Conflict Bystander Affiliation in Mandrills

    Get PDF
    Background: Affiliative interactions exchanged between victims of aggression and individuals not involved in the original aggression (bystanders) have been observed in various species. Three hypothetical functions have been proposed for these interactions: consolation, self-protection and substitute reconciliation, but data to test them are scanty. Methodology/Principal Findings: We conducted post-conflict and matched control observations on a captive group of mandrills (Mandrillus sphinx). We found that victims often redirected aggression to bystanders, that they received most affiliation from those bystanders that were frequently the target of redirection, and that bystander affiliation reduced the likelihood of redirection. Bystander affiliation did not reduce the victim\u27s distress (as measured by its scratching rates) and was not received primarily from kin/friends. Finally, bystander affiliation did not reduce the likelihood of renewed aggression from the original aggressor. Conclusions/Significance: These results provide support for the self-protection hypothesis but not for the consolation and substitute reconciliation hypotheses

    Carotenoid fluorescence in Dunaliella salina

    Get PDF
    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid globules in vivo. In this study, we show that the carotenoid-rich globules emit clear green fluorescence, which can be used in, for example, fluorescence microscopy (e.g. CLSM) to obtain pictures of the cells and their carotenoid content
    • …
    corecore