42 research outputs found

    Influence of Multiple Light Scattering on PDV Measurements in Presence of Ejecta

    Get PDF
    Author Institution: French Alternative Energies and Atomic Energy Commission (CEA)Slides presented at the 2018 Photonic Doppler Velocimetry (PDV) Users Workshop, Drury Plaza Hotel, Santa Fe, New Mexico, May 16-18, 2018

    Multiple light scattering in metallic ejecta produced under intense shockwave compression

    Get PDF
    A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ejecta velocities in dynamic compression experiments and on nanosecond time scales. Shortly after shock breakout at the metal–vacuum interface, a particular feature observed in many experiments in the velocity spectrograms is what appear to be slow-moving ejecta, below the free-surface velocity. Using Doppler Monte Carlo simulations incorporating the transport of polarization in the ejecta, we show that this feature is likely to be explained by the multiple scattering of light, rather than by possible collisions among particles, slowing down the ejecta. As the cloud expands in a vacuum, the contribution of multiple scattering decreases due to the limited field of view of the pigtailed collimator used to probe the ejecta, showing that the whole geometry of the system must be taken into account in the calculations to interpret and predict PDV measurements. © 2018 Optical Society of America

    Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term potentiation (LTP) and long-term depression (LTD) play important roles in mediating activity-dependent changes in synaptic transmission and are believed to be crucial mechanisms underlying learning and cortical plasticity. In human subjects, however, the lack of adequate input stimuli for the induction of LTP and LTD makes it difficult to study directly the impact of such protocols on behavior.</p> <p>Results</p> <p>Using tactile high- and low-frequency stimulation protocols in humans, we explored the potential of such protocols for the induction of perceptual changes. We delivered tactile high-frequency and low-frequency stimuli (t-HFS, t-LFS) to skin sites of approximately 50 mm<sup>2 </sup>on the tip of the index finger. As assessed by 2-point discrimination, we demonstrate that 20 minutes of t-HFS improved tactile discrimination, while t-LFS impaired performance. T-HFS-effects were stable for at least 24 hours whereas t-LFS-induced changes recovered faster. While t-HFS changes were spatially very specific with no changes on the neighboring fingers, impaired tactile performance after t-LFS was also observed on the right middle-finger. A central finding was that for both t-LFS and t-HFS perceptual changes were dependent on the size of the stimulated skin area. No changes were observed when the stimulated area was very small (< 1 mm<sup>2</sup>) indicating special requirements for spatial summation.</p> <p>Conclusion</p> <p>Our results demonstrate differential effects of such protocols in a frequency specific manner that might be related to LTP- and LTD-like changes in human subjects.</p

    Motor-Cortical Interaction in Gilles de la Tourette Syndrome

    Get PDF
    BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS

    Youth Arts in Hospital: Engaging Creativity in Care

    No full text

    Gesunde Hochschule: Neue Impulse durch forschendes Lernen

    No full text
    Mit mehreren Initiativen hat der Fachbereich Sozialversicherung der Hochschule Bonn-Rhein-Sieg die Gruppe der dual Studierenden unter dem Aspekt der „Work-Study-Life-Balance“ in den Blick genommen. In diesem Beitrag wird das „forschende Lernen“ als ein wertvoller Handlungsansatz auf dem Weg zu einer gesunden Hochschule thematisiert. Hierbei wird ein laufendes Forschungsprojekt aus dem Bereich „Prüfungsstress“ vorgestellt, welches unter dem Motto „Gesunder Campus Hennef“ durchgeführt wurde
    corecore