4,303 research outputs found
Time-dependent gravity in southern California, May 1974 - Apr 1979
Gravity measurements were coordinated with the long baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project which used radio interferometry with extra-galactic radio sources. Gravity data from 28 of the stations had a single reading standard deviation of 11 microgal which gives a relative single determination between stations a standard deviation of 16 microgal. The largest gravity variation observed, 80 microgal, correlated with nearby waterwell variations and with smoothed rainfall. Smoothed rainfall data appeared to be a good indicator of the qualitative response of gravity to changing groundwater levels at other suprasediment stations, but frequent measurement of gravity at a station was essential until the quantitative calibration of the station's response to groundwater variations was accomplished
SCORPIO-II: Spectral indices of weak Galactic radio sources
In the next few years the classification of radio sources observed by the
large surveys will be a challenging problem, and spectral index is a powerful
tool for addressing it. Here we present an algorithm to estimate the spectral
index of sources from multiwavelength radio images. We have applied our
algorithm to SCORPIO (Umana et al. 2015), a Galactic Plane survey centred
around 2.1 GHz carried out with ATCA, and found we can measure reliable
spectral indices only for sources stronger than 40 times the rms noise. Above a
threshold of 1 mJy, the source density in SCORPIO is 20 percent greater than in
a typical extra-galactic field, like ATLAS (Norris et al. 2006), because of the
presence of Galactic sources. Among this excess population, 16 sources per
square degree have a spectral index of about zero, suggesting optically thin
thermal emission such as Hii regions and planetary nebulae, while 12 per square
degree present a rising spectrum, suggesting optically thick thermal emission
such as stars and UCHii regions.Comment: 12 pages, 11 figures, accepted by MNRA
Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics
We, first, analytically work out the long-term, i.e. averaged over one
orbital revolution, perturbations on the orbit of a test particle moving in a
local Fermi frame induced therein by the cosmological tidal effects of the
inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently
attracted attention, among other things, as a possible explanation of the
observed cosmic acceleration without resorting to dark energy. Then, we
phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 =
-\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of
solar system data. The corrections to the standard
Newtonian/Einsteinian precessions of the perihelia of the inner planets
recently estimated with the EPM ephemerides, compared to our predictions for
them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of
the Cassini-based Earth-Saturn range, compared with the numerically integrated
LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced
distortions of the orbit of a typical object of the Oort cloud with respect to
the commonly accepted Newtonian picture, based on the observations of the comet
showers from that remote region of the solar system, point towards K_1/2 <=
10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from
cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference
added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP
10C continued: A deeper radio survey at 15.7 GHz
We present deep 15.7-GHz observations made with the Arcminute Microkelvin
Imager Large Array in two fields previously observed as part of the Tenth
Cambridge (10C) survey. These observations allow the source counts to be
calculated down to 0.1 mJy, a factor of five deeper than achieved by the 10C
survey. The new source counts are consistent with the extrapolated fit to the
10C source count, and display no evidence for either steepening or flattening
of the counts. There is thus no evidence for the emergence of a significant new
population of sources (e.g. starforming) at 15.7 GHz flux densities above 0.1
mJy, the flux density level at which we expect starforming galaxies to begin to
contribute. Comparisons with the de Zotti et al. model and the SKADS Simulated
Sky show that they both underestimate the observed number of sources by a
factor of two at this flux density level. We suggest that this is due to the
flat-spectrum cores of radio galaxies contributing more significantly to the
counts than predicted by the models.We thank the staff of the Mullard Radio Astronomy Observatory for maintaining and operating AMI. IHW and CR acknowledge Science and Technology Facilities Council studentships. IHW acknowledges support from the Square Kilometre Array South Africa project and the South African National Research Foundation. This research has made use of NASA’s Astrophysics Data System. We thank the referee for their careful reading of this manuscript.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv296
Canonical Quantization of Spherically Symmetric Dust Collapse
Quantum gravity effects are likely to play a crucial role in determining the
outcome of gravitational collapse during its final stages. In this contribution
we will outline a canonical quantization of the LeMaitre-Tolman-Bondi models,
which describe the collapse of spherical, inhomogeneous, non-rotating dust.
Although there are many models of gravitational collapse, this particular class
of models stands out for its simplicity and the fact that both black holes and
naked singularity end states may be realized on the classical level, depending
on the initial conditions. We will obtain the appropriate Wheeler-DeWitt
equation and then solve it exactly, after regularization on a spatial lattice.
The solutions describe Hawking radiation and provide an elegant microcanonical
description of black hole entropy, but they raise other questions, most
importantly concerning the nature of gravity's fundamental degrees of freedom.Comment: 19 pages no figures. Contribution to a festschrift in honor of Joshua
N. Goldber
Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array
We apply two methods to estimate the 21~cm bispectrum from data taken within
the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA).
Using data acquired with the Phase II compact array allows a direct bispectrum
estimate to be undertaken on the multiple redundantly-spaced triangles of
antenna tiles, as well as an estimate based on data gridded to the -plane.
The direct and gridded bispectrum estimators are applied to 21 hours of
high-band (167--197~MHz; =6.2--7.5) data from the 2016 and 2017 observing
seasons. Analytic predictions for the bispectrum bias and variance for point
source foregrounds are derived. We compare the output of these approaches, the
foreground contribution to the signal, and future prospects for measuring the
bispectra with redundant and non-redundant arrays. We find that some triangle
configurations yield bispectrum estimates that are consistent with the expected
noise level after 10 hours, while equilateral configurations are strongly
foreground-dominated. Careful choice of triangle configurations may be made to
reduce foreground bias that hinders power spectrum estimators, and the 21~cm
bispectrum may be accessible in less time than the 21~cm power spectrum for
some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS
AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz
The Planck Early Release Compact Source Catalogue includes 26 sources with no
obvious matches in other radio catalogues (of primarily extragalactic sources).
Here we present observations made with the Arcminute Microkelvin Imager Small
Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at
declination > +10 degrees. Of the eight, four are detected and are associated
with known objects. The other four are not detected with the AMI SA, and are
thought to be spurious.Comment: 6 pages, 5 figures, 4 table
The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems
The use of ultra-precise optical clocks in space ("master clocks") will allow
for a range of new applications in the fields of fundamental physics (tests of
Einstein's theory of General Relativity, time and frequency metrology by means
of the comparison of distant terrestrial clocks), geophysics (mapping of the
gravitational potential of Earth), and astronomy (providing local oscillators
for radio ranging and interferometry in space). Within the ELIPS-3 program of
ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an
optical lattice clock on the ISS towards the end of this decade, as a natural
follow-on to the ACES mission, improving its performance by at least one order
of magnitude. The payload is planned to include an optical lattice clock, as
well as a frequency comb, a microwave link, and an optical link for comparisons
of the ISS clock with ground clocks located in several countries and
continents. Undertaking a necessary step towards optical clocks in space, the
EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two
"engineering confidence", accurate transportable lattice optical clock
demonstrators having relative frequency instability below 1\times10^-15 at 1 s
integration time and relative inaccuracy below 5\times10^-17. This goal
performance is about 2 and 1 orders better in instability and inaccuracy,
respectively, than today's best transportable clocks. The devices will be based
on trapped neutral ytterbium and strontium atoms. One device will be a
breadboard. The two systems will be validated in laboratory environments and
their performance will be established by comparison with laboratory optical
clocks and primary frequency standards. In this paper we present the project
and the results achieved during the first year.Comment: Contribution to European Frequency and Time Forum 2012, Gothenburg,
Swede
- …
