51 research outputs found

    The use of spent glauconite in lightweight aggregate production

    Get PDF
    The presented work has shown an application of spent glauconite bed after purification of wastewater for production of lightweight expanded clay aggregates. Sewage, from which it was removed Zn ions, came from technological line (zincworks) of Communication Equipment Factory „PZL” Świdnik. Spent glauconite bed was used as an additive in lightweight aggregate production which was obtained using plastic method by sintering, at temperature 1140ºC and 1200 ºC, of spent glauconite amouts 10, 15, 20 and 25% wt. with clays from open-cast mine „Budy Mszczonowskie”. The presence of the mineral improves sinter texture, increases porosity and contributes to formation of glassy layer on the surface of the aggregates. Tests of zinc elution from lightweight of aggregate samples has shown very low mobility of zinc ions. Content of zinc in water extracts obtained from lightweight of aggregate is definitely lower than zinc concentration permitted for sewage discharge to water or soil, means that spent material is not offensive for the environment as it can be used as a high quality building product.Peer reviewe

    Structure and magnetic properties of Bi5Ti3FeO15 ceramics prepared by sintering, mechanical activation and EDAMM process. A comparative study

    Get PDF
    Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA) with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM). The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state

    Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture

    Get PDF
    The mesoporous silicate molecular sieve, MCM-41, has been synthesized from pulverized coal fly ash (PFA), where the silicate filtrate used is a by-product from hydrothermal zeolite production. Rice husk ash was also used for comparison but fusion with sodium hydroxide was used to prepare the silicate filtrate, along similar lines to earlier reports of using PFA as a precursor for MCM-41 synthesis. The MCM-41 samples are chemically and mineralogically similar to a commercially available sample, but with higher pore volumes dominated by mesopores (0.92–1.13 cf. 0.88 cm3 g−1). After polyethyleneimine (PEI) impregnation for CO2 capture, the ash derived MCM-41 samples displayed higher uptakes than the commercial sample with the maximum achievable PEI loading of 60 Wt.% PEI (dry basis) before particle agglomeration occurs, approximately 13 compared to 11 Wt.%, respectively, the latter being comparable to earlier reports in the literature. The PFA sample that displays the fastest kinetics to achieve 90% of the equilibrium uptake had the largest mesopore volume of 1.13 cm3 g−1. Given the PFA-derived MCM-41 uses a waste silicate solution for hydrothermal preparation and no prior preparation is needed, production costs are estimated to be considerable lower where silicate solutions need to be prepared by base treatment, even if ash is used, as for the RHA derived MCM-41 used here

    Pressure Collapse of the Magnetic Ordering in MnSi via Thermal Expansion

    Full text link
    The itinerant quasi-ferromagnetic metal MnSi has been studied by detailed thermal expansion measurements under pressures and magnetic fields. A sudden decrease of the volume at the critical pressure Pc ~1.6 GPa has been observed and is in good agreement with the pressure variation of the volume fraction of the spiral magnetic ordering. This confirms that the magnetic order disappears by a first order phase transition. The energy change estimated by the volume discontinuity on crossing Pc is of similar order as the Zeeman energy of the transition from the spiral ground state to a polarized paramagnetic one under magnetic field. In contrast to the strong pressure dependence of the transition temperature, the characteristic fields are weakly pressure dependent, indicating that the strength of the ferromagnetic and the Dzyaloshinskii-Moriya interactions do not change drastically around Pc. The evaluated results of the thermal expansion coefficient and the magnetostriction are analyzed thermodynamically. The Sommerfeld coefficient of the linear temperature term of the specific heat is enhanced just below Pc. The magnetic field-temperature phase diagrams in the ordered and paramagnetic phases are also compared. Comparison is made with other heavy fermion compounds with first order phase transition at 0 K.Comment: 9 pages, 13 figures, accepted to be published in JPS

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    X type zeolitic materials synthesized from fly ash using hydrothermal and low-temperature methods

    No full text
    W pracy przedstawiono wyniki badań nad możliwością transformacji popiołu lotnego klasy F w materiał zeolitowy. Wykorzystano dwie metody syntezy: hydrotermalną i niskotemperaturową. W wyniku alkalicznych reakcji popiołów lotnych z NaOH w obu przypadkach otrzymano materiał zeolitowy bogaty w fazę Na-X. Zbadano charakter mineralogiczny i właściwości fizykochemiczne otrzymanego materiału oraz przedstawiono możliwości praktycznego wykorzystania.This study presents the results of experiments dealing with the possibility of transforming F class fly ash into a zeolitic material. Two types of synthesis methods were used in the research: hydrothermal and low-temperature synthesis. As a result of alkaline reaction of fly ash with NaOH, all experimental cases yielded zeolitic material which is rich in Na-X phase. The mineralogical composition as well as the physico-chemical properties in Na-X phase was obtained. The mineralogical composition as well as the physico-chemical properties of the obtained material are explored and the feasibility of practical application is shown
    corecore