10 research outputs found

    Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter

    Full text link
    The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters and update model states by integrating observed data. The EnKF is known to perform optimally only for multi-Gaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work, we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard data) may not be available, which requires the estimation of conductivities from indirect observations, such as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic aquifer solely from piezometric head data. By comparison with a more standard implementation of the EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment, and transport predictions. © 2011 International Association for Mathematical Geosciences.The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The first author appreciates the financial aid from China Scholarship Council (CSC No. [2007]3020).Zhou, H.; Li, L.; Hendricks Franssen, H.; Gómez-Hernández, JJ. (2012). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences. 44(2):169-185. https://doi.org/10.1007/s11004-011-9372-3S169185442Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, Berlin, 279 ppFernàndez-Garcia D, Illangasekare T, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41(3):W03012Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian fields. In: Soares A (ed) Geostatistics Tróia ’92, vol 1. Kluwer Academic, Dordrecht, pp 85–94Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128:79–87Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Tech rep. Open-File Report 00-92, U.S. Department of the Interior, U.S. Geological Survey. Reston, Virginia, 121 ppHendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble Kalman Filter: joint estimation for states and parameters and the filter inbreeding problem. Water Resour Res 44:W09408Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macrodispersion experiment (MADE) site, Columbus air force base, Mississippi (USA). J Hydrol 404(3–4):278–293Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34(4):478–489Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147Naevdal G, Johnsen L, Aanonsen S, Vefring E (Mar. 2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J 10(1):66–74Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785Schöniger A, Nowak W, Hendricks Franssen HJ (2011) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res (submitted)Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London. 181 ppStrébelle S 2000. Sequential simulation drawing structures from training images. PhD thesis, Stanford University. 187 ppStrebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter: the confirming approach. SPE J 11(4):431–442Wen X, Chen W (2007) Some practical issues on real time reservoir updating using ensemble Kalman filter. SPE J 12(2):156–166Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864Zinn B, Harvey C (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):105

    Modeling Soil Processes: Review, Key Challenges, and New Perspectives

    Get PDF
    © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved. The remarkable complexity of soil and its importance to a wide range of ecosystem services presents major challenges to the modeling of soil processes. Although major progress in soil models has occurred in the last decades, models of soil processes remain disjointed between disciplines or ecosystem services, with considerable uncertainty remaining in the quality of predictions and several challenges that remain yet to be addressed. First, there is a need to improve exchange of knowledge and experience among the different disciplines in soil science and to reach out to other Earth science communities. Second, the community needs to develop a new generation of soil models based on a systemic approach comprising relevant physical, chemical, and biological processes to address critical knowledge gaps in our understanding of soil processes and their interactions. Overcoming these challenges will facilitate exchanges between soil modeling and climate, plant, and social science modeling communities. It will allow us to contribute to preserve and improve our assessment of ecosystem services and advance our understanding of climate-change feedback mechanisms, among others, thereby facilitating and strengthening communication among scientific disciplines and society. We review the role of modeling soil processes in quantifying key soil processes that shape ecosystem services, with a focus on provisioning and regulating services. We then identify key challenges in modeling soil processes, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes. We discuss how the soil modeling community could best interface with modern modeling activities in other disciplines, such as climate, ecology, and plant research, and how to weave novel observation and measurement techniques into soil models. We propose the establishment of an international soil modeling consortium to coherently advance soil modeling activities and foster communication with other Earth science disciplines. Such a consortium should promote soil modeling platforms and data repository for model development, calibration and intercomparison essential for addressing contemporary challenges.status: publishe
    corecore