16,869 research outputs found

    Sum rules for charmed baryon masses

    Get PDF
    The measured masses of the three charge states of the charmed Σc\Sigma_c baryon are found to be in disagreement with a sum rule based on the quark model, but relying on no detailed assumptions about the form of the interaction. This poses a significant problem for the charmed baryon sector of the quark model. Other relations among charmed baryon masses are also discussed.Comment: 5 pages, latex, no figure

    Mixing of Xi_c and Xi_c' Baryons

    Full text link
    The mixing angle between the Xi_c and Xi_c' baryons is shown to be small, with a negligible shift in the Xi_c masses.Comment: One missprint corrected. The numerator of Eq. (12) should read {2[(Sigma_c^{*++}-Sigma_c^{++})-(Xi_c^{*+}-Xi_c^{'+})]} The correct equation was used in the calculation so no other change is mad

    The Meta-Explanatory Question

    Get PDF
    Philosophical theories of explanation characterize the difference between correct and incorrect explanations. While remaining neutral as to which of these ‘first-order’ theories is right, this paper asks the ‘meta-explanatory’ question: is the difference between correct and incorrect explanation real, i.e., objective or mind-independent? After offering a framework for distinguishing realist from anti-realist views, I sketch three distinct paths to explanatory anti-realism

    Two-region model for positive and negative plasma sheaths and its application to Hall thruster metallic anodes.

    Get PDF
    An asymptotic presheath/sheath model for positive and negative sheaths in front of a conducting electrode, with a continuous parametric transition at the no-sheath case, is presented. Key aspects of the model are as follows: full hydrodynamics of both species in the presheath; a kinetic formulation with a truncated distribution function for the repelled species within the sheath; and the fulfillment of the marginal Bohm condition at the sheath edge, in order to match the two formulations of the repelled species. The sheath regime depends on the ratios of particle fluxes and sound speeds between the two species. The presheath model includes the effect of a magnetic field parallel to the wall on electrons. An asymptotic, parametric study of the anode presheath is carried out in terms of the local ion-to-electron flux ratio and Hall parameter. The drift-diffusive model of magnetized electrons fails in a parametric region that includes parts of the negative sheath regime. In the case of the Hall parameter vanishing near the electrode and a weakly collisional plasma, a quasisonic, quasineutral plateau forms next to the sheath edge

    An Optical Illusion

    Get PDF
    n/

    Radio-frequency discharges in Oxygen. Part 1: Modeling

    Full text link
    In this series of three papers we present results from a combined experimental and theoretical effort to quantitatively describe capacitively coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo model on which the theoretical description is based will be described in the present paper. It treats space charge fields and transport processes on an equal footing with the most important plasma-chemical reactions. For given external voltage and pressure, the model determines the electric potential within the discharge and the distribution functions for electrons, negatively charged atomic oxygen, and positively charged molecular oxygen. Previously used scattering and reaction cross section data are critically assessed and in some cases modified. To validate our model, we compare the densities in the bulk of the discharge with experimental data and find good agreement, indicating that essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure

    Global water cycle

    Get PDF
    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction

    Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Get PDF
    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons

    Electron surface layer at the interface of a plasma and a dielectric wall

    Full text link
    We study the potential and the charge distribution across the interface of a plasma and a dielectric wall. For this purpose, the charge bound to the wall is modelled as a quasi-stationary electron surface layer which satisfies Poisson's equation and minimizes the grand canonical potential of the wall-thermalized excess electrons constituting the wall charge. Based on an effective model for a graded interface taking into account the image potential and the offset of the conduction band to the potential just outside the dielectric, we specifically calculate the potential and the electron distribution for magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium discharge. Depending on the electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons do not penetrate into the wall and an external surface charge is formed in the image potential, while for positive electron affinity, electrons penetrate into the wall and a space charge layer develops in the interior of the dielectric. We also investigate how the electron surface layer merges with the bulk of the dielectric.Comment: 15 pages, 9 figures, accepted versio
    • …
    corecore