16,869 research outputs found
Sum rules for charmed baryon masses
The measured masses of the three charge states of the charmed
baryon are found to be in disagreement with a sum rule based on the quark
model, but relying on no detailed assumptions about the form of the
interaction. This poses a significant problem for the charmed baryon sector of
the quark model. Other relations among charmed baryon masses are also
discussed.Comment: 5 pages, latex, no figure
Mixing of Xi_c and Xi_c' Baryons
The mixing angle between the Xi_c and Xi_c' baryons is shown to be small,
with a negligible shift in the Xi_c masses.Comment: One missprint corrected. The numerator of Eq. (12) should read
{2[(Sigma_c^{*++}-Sigma_c^{++})-(Xi_c^{*+}-Xi_c^{'+})]} The correct equation
was used in the calculation so no other change is mad
The Meta-Explanatory Question
Philosophical theories of explanation characterize the difference between correct and incorrect explanations. While remaining neutral as to which of these ‘first-order’ theories is right, this paper asks the ‘meta-explanatory’ question: is the difference between correct and incorrect explanation real, i.e., objective or mind-independent? After offering a framework for distinguishing realist from anti-realist views, I sketch three distinct paths to explanatory anti-realism
Two-region model for positive and negative plasma sheaths and its application to Hall thruster metallic anodes.
An asymptotic presheath/sheath model for positive and negative sheaths in front of a conducting electrode, with a continuous parametric transition at the no-sheath case, is presented. Key aspects of the model are as follows: full hydrodynamics of both species in the presheath; a kinetic formulation with a truncated distribution function for the repelled species within the sheath; and the fulfillment of the marginal Bohm condition at the sheath edge, in order to match the two formulations of the repelled species. The sheath regime depends on the ratios of particle fluxes and sound speeds between the two species. The presheath model includes the effect of a magnetic field parallel to the wall on electrons. An asymptotic, parametric study of the anode presheath is carried out in terms of the local ion-to-electron flux ratio and Hall parameter. The drift-diffusive model of magnetized electrons fails in a parametric region that includes parts of the negative sheath regime. In the case of the Hall parameter vanishing near the electrode and a weakly collisional plasma, a quasisonic, quasineutral plateau forms next to the sheath edge
Radio-frequency discharges in Oxygen. Part 1: Modeling
In this series of three papers we present results from a combined
experimental and theoretical effort to quantitatively describe capacitively
coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo
model on which the theoretical description is based will be described in the
present paper. It treats space charge fields and transport processes on an
equal footing with the most important plasma-chemical reactions. For given
external voltage and pressure, the model determines the electric potential
within the discharge and the distribution functions for electrons, negatively
charged atomic oxygen, and positively charged molecular oxygen. Previously used
scattering and reaction cross section data are critically assessed and in some
cases modified. To validate our model, we compare the densities in the bulk of
the discharge with experimental data and find good agreement, indicating that
essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure
Recommended from our members
Development of outbred CD1 mouse colonies with distinct standardized gut microbiota profiles for use in complex microbiota targeted studies.
Studies indicate that the gut microbiota (GM) can significantly influence both local and systemic host physiologic processes. With rising concern for optimization of experimental reproducibility and translatability, it is essential to consider the GM in study design. However, GM profiles can vary between rodent producers making consistency between models challenging. To circumvent this, we developed outbred CD1 mouse colonies with stable, complex GM profiles that can be used as donors for a variety of GM transfer techniques including rederivation, co-housing, cross-foster, and fecal microbiota transfer (FMT). CD1 embryos were surgically transferred into CD1 or C57BL/6 surrogate dams that varied by GM composition and complexity to establish four separate mouse colonies harboring GM profiles representative of contemporary mouse producers. Using targeted 16S rRNA amplicon sequencing, subsequent female offspring were found to have similar GM profiles to surrogate dams. Furthermore, breeding colonies of CD1 mice with distinct GM profiles were maintained for nine generations, demonstrating GM stability within these colonies. To confirm GM stability, we shipped cohorts of these four colonies to collaborating institutions and found no significant variation in GM composition. These mice are an invaluable experimental resource that can be used to investigate GM effects on mouse model phenotype
Global water cycle
The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction
Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan
The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons
Electron surface layer at the interface of a plasma and a dielectric wall
We study the potential and the charge distribution across the interface of a
plasma and a dielectric wall. For this purpose, the charge bound to the wall is
modelled as a quasi-stationary electron surface layer which satisfies Poisson's
equation and minimizes the grand canonical potential of the wall-thermalized
excess electrons constituting the wall charge. Based on an effective model for
a graded interface taking into account the image potential and the offset of
the conduction band to the potential just outside the dielectric, we
specifically calculate the potential and the electron distribution for
magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium
discharge. Depending on the electron affinity of the surface, we find two
vastly different behaviors. For negative electron affinity, electrons do not
penetrate into the wall and an external surface charge is formed in the image
potential, while for positive electron affinity, electrons penetrate into the
wall and a space charge layer develops in the interior of the dielectric. We
also investigate how the electron surface layer merges with the bulk of the
dielectric.Comment: 15 pages, 9 figures, accepted versio
- …