17,200 research outputs found

    Physiographic constraints on the origin of lunar wrinkle ridges

    Get PDF
    Wrinkle ridges are linear asymmetric topographic highs with considerable morphologic complexity that are commonly found on the lunar maria and the smooth plains of Mars and Mercury. The origin of planetary wrinkle ridges has been a much argued and debated topic. Early ideas suggested that wrinkle ridges resulted from volcanic intrusion and extrusion of high viscosity lavas; these early ideas were countered with suggestions that wrinkle ridges formed from tectonic processes involving folding and faulting. Combined volcanic and tectonic mechanisms have also been suggested. The identification and analysis of a number of morphologically similar structures on the earth has helped in the recent interpretation of wrinkle ridges as thrust faults that deform surface rocks. Nevertheless, there remains the uncertainty of the dominant role of thrusting versus folding in the formation of planetary wrinkle ridges. Presented is a detailed physiographic analysis of lunar wrinkle ridges in an effort to help distinguish the dominant deformation mechanism. Results agree with the findings of the earth analog study and support the hypothesis that wrinkle ridges form from thrust faults that deform surface rocks

    Modelled and measured strain in mascon basins on the moon

    Get PDF
    The close association of wrinkle ridges and grabens with mascon basins on the Moon has suggested that the responsible compression and extension resulted from basin subsidence and peripheral flexing of the lithosphere. The distribution of grabens and wrinkle ridges associated with mascon basins has been further used along with elastic plate bending models to constrain the thickness of the lithosphere at the time of their formation. Kinematic models for basin subsidence have also been developed and compared with strains inferred from grabens and wrinkle ridges. Note that kinematic models may be preferable to dynamic models because the strain associated with tectonic features can be compared directly with model predictions and because fewer assumptions are required for their calculations, such as perfect elasticity and specific values of the elastic moduli. Also, if the results from kinematic models compare favorably with the strain estimated across the tectonic features on the Moon, then a global strain field may not be necessary. Herein, the strain inferred for wrinkle ridges and grabens was compared to that calculated from a simple kinematic subsidence model for mascon basins on the Moon

    Effect of Tidal Cycling Rate on the Distribution and Abundance of Nitrogen-Oxidizing Bacteria in a Bench-Scale Fill-and-Drain Bioreactor

    Get PDF
    Most domestic wastewater can be effectively treated for secondary uses by engineered biological systems. These systems rely on microbial activity to reduce nitrogen (N) content of the reclaimed water. Such systems often employ a tidal-flow process to minimize space requirements for the coupling of aerobic and anaerobic metabolic processes. In this study, laboratory-scale tidal-flow treatment systems were studied to determine how the frequency and duration of tidal cycling may impact reactor performance. Fluorescent in situ hybridization and epifluorescence microscopy were used to enumerate the key functional groups of bacteria responsible for nitrification and anaerobic ammonium oxidation (anammox), and N-removal efficiency was calculated via a mass-balance approach. When water was cycled (i.e., reactors were filled and drained) at high frequencies (16–24 cycles day−1), nitrate accumulated in the columns—presumably due to inadequate periods of anoxia that limited denitrification. At lower frequencies, such as 4 cycles day−1, nearly complete N removal was achieved (80–90%). These fill-and-drain systems enriched heavily for nitrifiers, with relatively few anammox-capable organisms. The microbial community produced was robust, surviving well through short (up to 3 h) anaerobic periods and frequent system-wide perturbation

    An LED pulser for measuring photomultiplier linearity

    Full text link
    A light-emitting diode (LED) pulser for testing the low-rate response of a photomultiplier tube (PMT) to scintillator-like pulses has been designed, developed, and implemented. This pulser is intended to simulate 80 ns full width at half maximum photon pulses over the dynamic range of the PMT, in order to precisely determine PMT linearity. This particular design has the advantage that, unlike many LED test rigs, it does not require the use of multiple calibrated LEDs, making it insensitive to LED gain drifts. Instead, a finite-difference measurement is made using two LEDs which need not be calibrated with respect to one another. These measurements give a better than 1% mapping of the response function, allowing for the testing and development of particularly linear PMT bases.Comment: 5 pages, 5 figure

    Shortcuts to Spherically Symmetric Solutions: A Cautionary Note

    Get PDF
    Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz invalidates it, as illustrated by the incorrect solutions of [1].Comment: 2 pages. Amplified derivation, accepted for publication in Class Quant Gra

    Evolutionary history influences the salinity preference of bacterial taxa in wetland soils

    Get PDF
    Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    An Efficient Opportunistic Cooperative Diversity Protocol for IEEE 802.11 Networks

    Full text link
    Opportunistic cooperation promises to enhance the user experience when streaming media over wireless devices by improving wireless network reliability at the link level. This paper presents DAFMAC, an efficient cooperative diversity partner selection algorithm for IEEE 802.11 devices. Simulation results show DAFMAC provides a significantly higher transmission reliability in poor channel conditions than traditional ARQ techniques without modifying the device hardware. Further analysis shows the low overhead of DAFMAC makes it highly competitive with other proposed cooperative retransmission mechanisms in an ad-hoc network
    • …
    corecore