6 research outputs found

    Use of resuscitation promoting factors to screen for tuberculosis infection in household-exposed children in The Gambia.

    Get PDF
    BACKGROUND: Interferon-γ release assays (IGRA) with Resuscitation promoting factor (Rpf) proteins enhanced tuberculosis (TB) screening and diagnosis in adults but have not been evaluated in children. Children often develop paucibacillary TB and their immune response differs from that of adults, which together affect TB disease diagnostics and immunodiagnostics. We assessed the ability of Rpf to identify infection among household TB-exposed children in The Gambia and investigated their ability to discriminate Mycobacterium tuberculosis complex (MTBC) infection from active TB disease in children. METHODS: Detailed clinical investigations were done on 93 household TB-exposed Gambian children and a tuberculin skin test (TST) was administered to asymptomatic children. Venous blood was collected for overnight stimulation with ESAT-6/CFP-10-fusion protein (EC), purified protein derivative and RpfA, B, C, D and E. Interferon gamma (IFN-γ) production was measured by ELISA in supernatants and corrected for the background level. Infection status was defined by IGRA with EC and TB disease by mycobacterial confirmation and/or clinical diagnosis. We compared IFN-γ levels between infected and uninfected children and between infected and TB diseased children using a binomial logistic regression model while correcting for age and sex. A Receiver Operating Characteristics analysis was done to find the best cut-off for IFN-γ level and calculate sensitivity and specificity. RESULTS: Interferon gamma production was significantly higher in infected (IGRA+, n = 45) than in uninfected (IGRA-, n = 20) children after stimulation with RpfA, B, C, and D (P = 0.03; 0.007; 0.03 and 0.003, respectively). Using RpfB and D-specific IFN-γ cut-offs (33.9 pg/mL and 67.0 pg/mL), infection was classified with a sensitivity-specificity combination of 73-92% and 77-72% respectively, which was similar to and better than 65-75% for TST. Moreover, IFN-γ production was higher in infected than in TB diseased children (n = 28, 5 bacteriologically confirmed, 23 clinically diagnosed), following RpfB and D stimulation (P = 0.02 and 0.03, respectively). CONCLUSION: RpfB and RpfD show promising results for childhood MTBC infection screening, and both performed similar to and better than the TST in our study population. Additionally, both antigens appear to discriminate between infection and disease in children and thus warrant further investigation as screening and diagnostic antigens for childhood TB

    RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response

    Get PDF
    Improved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts. Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies

    Discovery of HLA-E-presented epitopes: MHC-E/Peptide binding and t-cell recognition

    No full text
    Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells

    Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes

    Get PDF
    Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.Experimental cancer immunology and therap
    corecore