255 research outputs found

    PROSET — A Language for Prototyping with Sets

    Get PDF
    We discuss the prototyping language PROSET(Prototyping with Sets) as a language for experimental and evolutionary prototyping, focusing its attention on algorithm design. Some of PROSET’s features include generative communication, flexible exception handling and the integration of persistence. A discussion of some issues pertaining to the compiler and the programming environment conclude the pape

    Risk Stratification, Measurable Residual Disease, and Outcomes of AML Patients with a Trisomy 8 Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    Get PDF
    Background: For most patients with acute myeloid leukemia (AML) harboring a trisomy 8 an allogeneic hematopoietic stem cell transplantation (HSCT) is a suitable and recommended consolidation therapy. However, comparative outcome analyses between patients with and without trisomy 8 undergoing allogeneic HSCT have not been performed so far. Methods: We retrospectively analyzed clinical features, outcomes, and measurable residual disease (MRD) of 659 AML (12%, n = 81, with a trisomy 8) patients subjected to allogeneic HSCT as a consolidation therapy. Results: The presence of a trisomy 8 associated with a trend for higher age at diagnosis, AML of secondary origin, lower white blood cell counts at diagnosis, worse ELN2017 genetic risk, wild-type NPM1, and mutated IDH1/2 and JAK2. Outcomes after allogeneic HSCT in the entire cohort did not differ between patients with a sole trisomy 8, trisomy 8 with additional cytogenetic aberrations or without a trisomy 8. A trisomy 8 did not affect outcomes within the three ELN2017 risk groups. In accordance with findings in unselected patient cohorts, persistent MRD at allogeneic HSCT in patients with a trisomy 8 identified individuals with a higher risk of relapse following allogeneic HSCT. Conclusions: Outcomes of trisomy 8 patients after allogeneic HSCT did not compare unfavorably to that of other AML patients following allogeneic HSCT. Rather than the presence or absence of a trisomy 8, additional genetic aberrations and MRD at HSCT define outcome differences and aid in informed treatment decisions

    Experimental induction of peritraumatic dissociation: The role of negative affect and pain and their psychophysiological and neural correlates

    Get PDF
    While research has elucidated processes underlying dissociative symptoms in patients with posttraumatic stress disorder, little is known about the circumstances under which trauma-related dissociation initially arises. To experimentally investigate causes and concomitants of peritraumatic dissociation, we subjected sixty-nine healthy women to aversive-audiovisual and painful-electrical stimulation in a 2(aversive/neutral film) x 2(pain/no pain) within-subject design while recording psychophysiological and fMRI-BOLD responses. Afterwards, participants rated negative-affect, pain, and dissociation for each condition. Using Bayesian multilevel regression models, we examined (1) whether aversive-audiovisual and painful-electrical stimulation elicit higher dissociation-levels than control conditions and (2) whether stronger negative-affect and pain responses (operationalized via self-report, psychophysiological, and neural markers) correlate with higher dissociation-levels. Several key findings emerged: Both aversive-audiovisual and painful-electrical stimulation elicited dissociation. Dissociation was linked to higher self-reported negative-affect, but we did not find enough evidence linking it to psychophysiological and neural negative-affect markers. However, dissociation was associated with higher levels of self-reported pain, a skin-conductance-response-based pain marker, and the fMRI-BOLD-based Neurologic-Pain-Signature. Results indicate that both aversive-audiovisual and painful stimuli can independently cause dissociation. Critically, pain responses captured via self-report, psychophysiological, and neural markers were consistently linked to higher dissociation-levels suggesting a specific, evolutionary meaningful, contribution of pain to the rise of dissociation

    Estradiol during (analogue-)trauma: Risk- or protective factor for intrusive re-experiencing?

    Get PDF
    Intrusions, a key symptom of posttraumatic stress disorder (PTSD), can occur in the form of images but also as pain sensations. Similar to audiovisual intrusions, the frequency and persistence of pain intrusions varies greatly between individuals. In the current study, we examined whether peritraumatic circulating 17β-estradiol (E2) levels are a biologic factor associated with subsequent audiovisual (i.e., film) and pain intrusion development, and whether peritraumatic stress levels modulate this relationship. Forty-one free-cycling women participated in an ecologically informed trauma-pain-conditioning (TPC) paradigm, using trauma-films and pain as unconditioned stimuli. Independent variables were salivary peritraumatic E2 levels and stress indexed by salivary cortisol and self-reported state-anxiety during TPC. Outcomes were film- and pain-intrusions occurring during daily-life in the week following TPC and a Memory-Triggering-Task in response to conditioned stimuli 24 h after TPC. In the week after analogue-trauma, higher peritraumatic E2 levels were associated with a greater probability of experiencing film-intrusions in the beginning of the week, which switched to a lower probability toward the end of the week. This time-dependent relationship between E2 and film-intrusions only held for higher state-anxious women. In contrast, results indicated a consistent inverse relationship between peritraumatic E2 levels and pain-intrusions during daily-life and Memory-Triggering-Task. Together, these data suggest that higher peritraumatic E2 levels could be associated with lower long-term visual trauma intrusions, as well as lower pain-intrusions, and thereby possibly constitute a protective biologic factor for PTSD and potentially also for chronic pain

    Deterministic control of magnetic vortex wall chirality by electric field

    Get PDF
    Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing

    The Roles of Transmembrane Domain Helix-III during Rhodopsin Photoactivation

    Get PDF
    Background: Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11- cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear. Principal Findings: We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation. Specifically, we study changes in accessibility and reactivity of cysteine residues introduced into the TM helix-III of rhodopsin. Twenty-eight single-cysteine mutants of rhodopsin (P107C-R135C) were prepared after substitution of all natural cysteine residues (C140/C167/C185/C222/C264/C316) by alanine. The cysteine mutants were expressed in COS-1 cells and rhodopsin was purified after regeneration with 11-cis-retinal. Cysteine accessibility in these mutants was monitored by reaction with 4, 49-dithiodipyridine (4-PDS) in the dark and after illumination. Most of the mutants except for T108C, G109C, E113C, I133C, and R135C showed no reaction in the dark. Wide variation in reactivity was observed among cysteines at different positions in the sequence 108–135 after photoactivation. In particular, cysteines at position 115, 119, 121, 129, 131, 132, and 135, facing 11-cis-retinal, reacted with 4-PDS faster than neighboring amino acids. The different reaction rates of mutants with 4-PDS after photoactivation suggest that the amino acids in different positions in helix-III are exposed to aqueous environment to varying degrees. Significance: Accessibility data indicate that an aqueous/hydrophobic boundary in helix-III is near G109 and I133. The lack of reactivity in the dark and the accessibility of cysteine after photoactivation indicate an increase of water/4-PDS accessibility for certain cysteine-mutants at Helix-III during formation of Meta II. We conclude that photoactivation resulted in water-accessible at the chromophore-facing residues of Helix-III.National Institutes of Health (U.S.) (grant GM28289)National Eye Institute (Grant Grant EY11716)National Science Foundation (U.S.) (grant EIA-0225609

    STAT3 Regulates Monocyte TNF-Alpha Production in Systemic Inflammation Caused by Cardiac Surgery with Cardiopulmonary Bypass

    Get PDF
    BACKGROUND: Cardiopulmonary bypass (CPB) surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR)-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF)-α production by monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38). Peripheral blood mononuclear cells (PBMC) and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNF-α production in the presence of suppressive patient plasma. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation

    Selective Serotonin Reuptake Inhibitor Use Is Associated with Right Ventricular Structure and Function: The MESA-Right Ventricle Study

    Get PDF
    PURPOSE:Serotonin and the serotonin transporter have been implicated in the development of pulmonary hypertension (PH). Selective serotonin reuptake inhibitors (SSRIs) may have a role in PH treatment, but the effects of SSRI use on right ventricular (RV) structure and function are unknown. We hypothesized that SSRI use would be associated with RV morphology in a large cohort without cardiovascular disease (N = 4114). METHODS:SSRI use was determined by medication inventory during the Multi-Ethnic Study of Atherosclerosis baseline examination. RV measures were assessed via cardiac magnetic resonance imaging. The cross-sectional relationship between SSRI use and each RV measure was assessed using multivariable linear regression; analyses for RV mass and end-diastolic volume (RVEDV) were stratified by sex. RESULTS:After adjustment for multiple covariates including depression and left ventricular measures, SSRI use was associated with larger RV stroke volume (RVSV) (2.75 mL, 95% confidence interval [CI] 0.48-5.02 mL, p = 0.02). Among men only, SSRI use was associated with greater RV mass (1.08 g, 95% CI 0.19-1.97 g, p = 0.02) and larger RVEDV (7.71 mL, 95% 3.02-12.40 mL, p = 0.001). SSRI use may have been associated with larger RVEDV among women and larger RV end-systolic volume in both sexes. CONCLUSIONS:SSRI use was associated with higher RVSV in cardiovascular disease-free individuals and, among men, greater RV mass and larger RVEDV. The effects of SSRI use in patients with (or at risk for) RV dysfunction and the role of sex in modifying this relationship warrant further study

    Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for Predictive In Vitro Blood-Brain Barrier Models

    Get PDF
    Brain microvascular endothelial cells (BEC) constitute the blood-brain barrier (BBB) which forms a dynamic interface between the blood and the central nervous system (CNS). This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local surroundings of BEC within the neurovascular unit are presented and discussed
    corecore