280 research outputs found
Recommended from our members
Hot dry rock geothermal energy development program: Annual operating plan, fiscal year 1989
With completion of the repairs of EE-2 wellbore in FY88, the major effort in FY89 will be directed toward the remaining preparations for the Long-Term Flow Test (LTFT) now scheduled to begin in September 1990. Procurement of components and equipment and installation of the surface system will continue through this and the next fiscal year to be ready for the LTFT in September 1990. Reservoir experiments will consist of pressurization and flow tests to establish further characteristics of the Phase II reservoir, particularly operating water losses. Laboratory studies will continue work on fracture healing and complete adsorption tests for chemically-reactive tracer work. Cleaning and relining of the EE-I pond to meet New Mexico State requirements, started in FY88, will be completed. Reanalysis of seismic data and automation of seismic data techniques will continue. Monitoring for environmental information, routine operations, security, health and safety training, and reporting activities will continue. The program's objectives are: (1) To develop HDR drilling, hardware and instrumentation technology for energy extraction and conduct a successful energy extraction field experiment of the Phase II reservoir. (2) To verify that the environmental consequences of HDR development are acceptable. (3) To improve HDR technology to the point where electricity could be produced commercially from a substantial number of known hot dry rock resource sites in a cost range of 5 to 8 cents/kWh. (4) To evaluate the performance of the Fenton Hill Phase II reservoir by 1992. That performance consists of system operating characteristics, including thermal drawdown, energy output, reservoir impedance, and water consumption
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Investigating the magnetic ground state of the skyrmion host material Cu2OSeO3 using long-wavelength neutron diffraction
We present long-wavelength neutron diffraction data measured on both single crystal and polycrystalline samples of the skyrmion host material Cu2OSeO3. We observe magnetic satellites around the (01⎯⎯1) diffraction peak not accessible to other techniques, and distinguish helical from conical spin textures in reciprocal space. Our measurements show that not only the field-polarised phase but also the helical ground state are made up of ferrimagnetic clusters instead of individual spins. These clusters are distorted Cu tetrahedra, where the spin on one Cu ion is anti-aligned with the spin on the three other Cu ions
Charmonium Production in Deep Inelastic Scattering at HERA
The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 Q^2 80 GeV^2 and photon-proton centre of mass energies 25 W 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions
Inelastic photoproduction of J/Psi mesons at HERA
An analysis of inelastic photoproduction of J/Psi mesons is presented using data collected at the ep collider HERA corresponding to an integrated luminosity of above 80pb-1. Differential and double differential cross sections are measured in a wide kinematic region: 6
A Measurement of the Proton Structure Function
A measurement of the proton structure function is reported
for momentum transfer squared between 4.5 and 1600 and
for Bjorken between and 0.13 using data collected by the
HERA experiment H1 in 1993. It is observed that increases
significantly with decreasing , confirming our previous measurement made
with one tenth of the data available in this analysis. The dependence is
approximately logarithmic over the full kinematic range covered. The subsample
of deep inelastic events with a large pseudo-rapidity gap in the hadronic
energy flow close to the proton remnant is used to measure the "diffractive"
contribution to .Comment: 32 pages, ps, appended as compressed, uuencoded fil
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
- …
