5 research outputs found
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Recommended from our members
The Association Between Lung Hyperinflation and Coronary Artery Disease in Smokers
BackgroundSmokers manifest varied phenotypes of pulmonary impairment.Research questionWhich pulmonary phenotypes are associated with coronary artery disease (CAD) in smokers?Study design and methodsWe analyzed data from the University of Pittsburgh COPD Specialized Center for Clinically Oriented Research (SCCOR) cohort (n = 481) and the Genetic Epidemiology of COPD (COPDGene) cohort (n = 2,580). Participants were current and former smokers with > 10 pack-years of tobacco exposure. Data from the two cohorts were analyzed separately because of methodologic differences. Lung hyperinflation was assessed by plethysmography in the SCCOR cohort and by inspiratory and expiratory CT scan lung volumes in the COPDGene cohort. Subclinical CAD was assessed as the coronary artery calcium score, whereas clinical CAD was defined as a self-reported history of CAD or myocardial infarction (MI). Analyses were performed in all smokers and then repeated in those with airflow obstruction (FEV1 to FVC ratio, < 0.70).ResultsPulmonary phenotypes, including airflow limitation, emphysema, lung hyperinflation, diffusion capacity, and radiographic measures of airway remodeling, showed weak to moderate correlations (r < 0.7) with each other. In multivariate models adjusted for pulmonary phenotypes and CAD risk factors, lung hyperinflation was the only phenotype associated with calcium score, history of clinical CAD, or history of MI (per 0.2 higher expiratory and inspiratory CT scan lung volume; coronary calcium: OR, 1.2; 95% CI, 1.1-1.5; P = .02; clinical CAD: OR, 1.6; 95% CI, 1.1-2.3; P = .01; and MI in COPDGene: OR, 1.7; 95% CI, 1.0-2.8; P = .05). FEV1 and emphysema were associated with increased risk of CAD (P < .05) in models adjusted for CAD risk factors; however, these associations were attenuated on adjusting for lung hyperinflation. Results were the same in those with airflow obstruction and were present in both cohorts.InterpretationLung hyperinflation is associated strongly with clinical and subclinical CAD in smokers, including those with airflow obstruction. After lung hyperinflation was accounted for, FEV1 and emphysema no longer were associated with CAD. Subsequent studies should consider measuring lung hyperinflation and examining its mechanistic role in CAD in current and former smokers