1,065 research outputs found

    SPITZER observations of dust destruction in the Puppis A supernova remnant

    Get PDF
    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 μm shows an extremely good correlation with X-ray emission, indicating that the SNR’s IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains

    Potential anti-inflammatory and anti-cancer properties of farnesol

    Get PDF
    © 2018 by the authors. Farnesol, an acyclic sesquiterpene alcohol, is predominantly found in essential oils of various plants in nature. It has been reported to exhibit anti-cancer and anti-inflammatory effects, and also alleviate allergic asthma, gliosis, and edema. In numerous tumor cell lines, farnesol can modulate various tumorigenic proteins and/or modulates diverse signal transduction cascades. It can also induce apoptosis and downregulate cell proliferation, angiogenesis, and cell survival. To exert its anti-inflammatory/anti-oncogenic effects, farnesol can modulate Ras protein and nuclear factor kappa-light-chain-enhancer of activated B cells activation to downregulate the expression of various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin-6. In this review, we describe the potential mechanisms of action underlying the therapeutic effects of farnesol against cancers and inflammatory disorders. Furthermore, these findings support the clinical development of farnesol as a potential pharmacological agent in clinical studies

    Aerothermal Design of a Common Probe for Multiple Planetary Destinations

    Get PDF
    Estimate the mass of the Thermal Protection System (TPS) for a single design construct of an atmospheric entry probe with a rigid aeroshell, which could be used at five destinations, i.e. Venus, Saturn, Uranus, Neptune, and perhaps, Jupiter. The entry mass of the probe is 400 kg with a ballistic coefficient of 216 kg/m2. Process: The 3DoF trajectory simulation program Traj, coupled with the TPS response program FIAT was used for simulation and design. The assumed atmospheric models were VIRA (Venus-GRAM) for Venus, the Julianne Moses' model for Saturn, a NASA Ames engineering model for Uranus, Neptune-GRAM for Neptune, and Galileo Probe (Al Seiff's) result for Jupiter

    Time Evolution of the Reverse Shock in SN 1006

    Get PDF
    The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp red edge to the Si II 1260 Angstrom feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell--material that is just encountering the reverse shock. Comparing HST far-UV spectra obtained with COS in 2010 and with STIS in 1999, we have measured the change in this feature over the intervening 10.5-year baseline. We find that the sharp red edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms, which means that the material hitting the reverse shock in 2010 was moving slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational confirmation of a long-predicted dynamic effect for a reverse shock: that the shock will work its way inward through expanding supernova ejecta and encounter ever slower material as it proceeds. We also find that the column density of shocked Si II (material that has passed through the reverse shock) has decreased by 7 +/- 2% over the ten-year period. The decrease could indicate that in this direction the reverse shock has been ploughing through a dense clump of Si,leading to pressure and density transients.Comment: 8 pages, includes 5 figure

    A High-Resolution X-Ray and Optical Study of SN1006: Asymmetric Expansion and Small-Scale Structure in a Type Ia Supernova Remnant

    Get PDF
    We introduce a deep (670 ks) X-ray survey of the entire SN 1006 remnant from the Chandra X-Ray Observatory, together with a deep H image of SN 1006 from the 4 m Blanco telescope at CTIO. Comparison with Chandra images from 2003 gives the first measurement of the X-ray proper motions around the entire periphery, carried out over a 9 yr baseline. We find that the expansion velocity varies significantly with azimuth. The highest velocity of approx.7400 km/s (almost 2.5 times that in the northwest (NW)) is found along the southeast (SE) periphery, where both the kinematics and the spectra indicate that most of the X-ray emission stems from ejecta that have been decelerated little, if at all. Asymmetries in the distribution of ejecta are seen on a variety of spatial scales. Si-rich ejecta are especially prominent in the SE quadrant, while O and Mg are more uniformly distributed, indicating large-scale asymmetries arising from the explosion itself. Neon emission is strongest in a sharp filament just behind the primary shock along the NWrim, where the pre-shock density is highest. Here the Ne is likely interstellar, while Ne within the shell may include a contribution from ejecta. Within the interior of the projected shell we find a few isolated "bullets" of what appear to be supernova ejecta that are immediately preceded by bowshocks seen in H, features that we interpret as ejecta knots that have reached relatively dense regions of the surrounding interstellar medium, but that appear in the interior in projection. Recent three-dimensional hydrodynamic models for Type Ia supernovae display small-scale features that strongly resemble the ones seen in X-rays in SN 1006; an origin in the explosion itself or from subsequent hydrodynamic instabilities both remain viable options. We have expanded the search for precursor X-ray emission ahead of a synchrotron-dominated shock front, as expected from diffusive shock acceleration theory, to numerous regions along both the northeast and southwest rims of the shell. Our data require that a precursor be thinner than about 3, and fainter than about 5% of the post-shock peak. These limits suggest that the magnetic field is amplified by a factor of seven or more in a narrow precursor region, promoting diffusive particle acceleration

    Isospin splitting in heavy baryons and mesons

    Full text link
    A recent general analysis of light-baryon isospin splittings is updated and extended to charmed baryons. The measured Σc\Sigma_c and Ξc\Xi_c splittings stand out as being difficult to understand in terms of two-body forces alone. We also discuss heavy-light mesons; though the framework here is necessarily less general, we nevertheless obtain some predictions that are not strongly model-dependent.Comment: 12 pages REVTEX 3, plus 4 uuencoded ps figures, CMU-HEP93-

    Report on the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3)

    Get PDF
    This report records and discusses the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3). The report includes a description of the keynote presentation of the workshop, which served as an overview of sustainable scientific software. It also summarizes a set of lightning talks in which speakers highlighted to-the-point lessons and challenges pertaining to sustaining scientific software. The final and main contribution of the report is a summary of the discussions, future steps, and future organization for a set of self-organized working groups on topics including developing pathways to funding scientific software; constructing useful common metrics for crediting software stakeholders; identifying principles for sustainable software engineering design; reaching out to research software organizations around the world; and building communities for software sustainability. For each group, we include a point of contact and a landing page that can be used by those who want to join that group's future activities. The main challenge left by the workshop is to see if the groups will execute these activities that they have scheduled, and how the WSSSPE community can encourage this to happen

    Misfit-dislocation generation by dissociated dislocations in quantum-well heterostructures

    Get PDF
    The mechanisms whereby 60° misfit dislocations are generated from dissociated threading dislocations in quantum-well heterostructures are considered. The two partial dislocations experience different misfit stresses, resulting in each partial having a different critical thickness. As a consequence, a number of different dislocation configurations are predicted, including the possibility of producing stacking faults of infinite width. © 1994 The American Physical Societ
    corecore