35 research outputs found

    Residential traffic exposure and pregnancy-related outcomes: a prospective birth cohort study

    Get PDF
    Background. The effects of ambient air pollution on pregnancy outcomes are under debate. Previous studies have used different air pollution exposure assessment methods. The considerable traffic-related intra-urban spatial variation needs to be considered in exposure assessment. Residential proximity to traffic is a proxy for traffic-related exposures that takes into account within-city contrasts. Methods. We investigated the association between residential proximity to traffic and various birth and pregnancy outcomes in 7,339 pregnant women and their children participating in a population-based cohort study. Residential proximity to traffic was defined as 1) distance-weighted traffic density in a 150 meter radius, and 2) proximity to a major road. We estimated associations of these exposures with birth weight, and with the risks of preterm birth and small size for gestational age at birth. Additionally, we examined associations with pregnancy-induced hypertension, (pre)eclampsia, and gestational diabetes. Results. There was considerable variation in distance-weighted traffic density. Almost fifteen percent of the participants lived within 50 m of a major road. Residential proximity to traffic was not associated with birth and pregnancy outcomes in the main analysis and in various sensitivity analyses. Conclusions. Mothers exposed to residential traffic had no higher risk of adverse birth outcomes or pregnancy complications in this study. Future studies may be refined by taking both temporal and spatial variation in air pollution exposure into account

    Maternal Psychosocial Stress during Pregnancy and Placenta Weight: Evidence from a National Cohort Study

    Get PDF
    To study in a large-scale cohort with prospective data the associations between psychosocial stress during pregnancy and placenta weight at birth. Animal data suggest that the placenta is involved in stress-related fetal programming.; We defined a priori two types of psychosocial stress during pregnancy, life stress (perceived burdens in major areas of life) and emotional symptoms (e.g. anxiety). We estimated the associations of maternal stress during pregnancy with placenta weight at birth, controlled for length of gestation, by predicting gestational age- and sex-specific z-scores of placenta weight through multiple regression analysis, adjusted for potential confounders (N?=?78,017 singleton pregnancies). Life stress (per increase in stress score by 1, range: 0-18) during pregnancy was associated with increased placenta weight at birth (z-score, reported in 10(-3); B, 14.33; CI, 10.12-18.54). In contrast, emotional symptoms during pregnancy were not associated with placenta weight at birth.; Maternal life stress but not emotional symptoms during pregnancy was associated with increased placenta weight at birth; yet, the association-estimate was rather small. Our results may contribute to a better understanding of the role of the placenta in the regulation of intrauterine processes in response to maternal stress

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches

    Did forest fires maintain mixed oak forests in southern Scandinavia? A dendrochronological speculation

    Get PDF
    In northern Europe, a long history of human exploitation effectively eliminated legacies of natural disturbances in mixed oak forests and we currently lack understanding of the role of natural disturbance factors in affecting oak regeneration into the forest canopies. We compiled dendrochronological, observational and paleochronological data from Southern Sweden to discuss the role of forest fires in oak (Quercus spp.) dynamics. We analyzed oak age structure and its growth dynamics in six southern Swedish forests, which experienced fires between 42 and 158 years prior to our sampling. Extending our analysis over longer time frames, we studied the relationship between sediment charcoal and oak pollen in an area of south-eastern Sweden, where oak has been a common canopy species. In three of the study sites, forest fires resulted in increased oak regeneration. Although fires were generally not associated with a wave of growth releases in surviving trees, the mean basal area growth rate of oaks increased by a range of 108% to 176%, following the fires. The overall pattern indicated that historical fires in oak-dominated forests were of low severity, did not kill canopy oaks, and yet provided a window of regeneration opportunities for that species. Post-fire sprouting of oak and an increase in oak seedling densities following modern prescribed fires are consistent with this explanation. Consistent with this conclusion were significant positive correlations between charcoal concentration and the oak pollen percentage in a site in southeastern Sweden. We discuss the co-occurrence of oak and pine in the historical southern Swedish landscape, as a possible analogy to eastern North American oak-pine forests. Modern conservation policies aimed at the preservation of oak in the southern Swedish landscape should consider the use of low severity fires to maintain natural oak regeneration

    The Deformable Featur Map - Adaptive Plasticity for Function Approximation

    No full text
    Wismüller A, Vietze F, Dersch DR, Hahn K, Ritter H. The Deformable Featur Map - Adaptive Plasticity for Function Approximation. In: Niklasson L, Boden M, Ziemke T, eds. ICANN 98: Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, Sweden, 2–4 September 1998. Perspectives in Neural Computing. Vol 1. London: Springer; 1998: 123-128.In this paper, we present an algorithm that provides adaptive plasticity in function approximation problems: the deformable (feature) map (DM) algorithm. The DM approach reduces a class of similar function approximation problems to the explicit supervised one-shot trainng of a single data set. This is followed by a subsequent, appropriate similarity transformation which is based on a self-organized deformation of the underlying multidimensional probability distributions. After discussing the theory of the DM algorithm, we use a computer simulation to visualize its effects on a two-dimensional toy example. Finally, we present results of its application to the real-world problem of fully automatic voxel-based multispectral image segmentation, employing magnetic resonance data sets of the human brain

    Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes

    No full text
    SUMMARY: DiGeorge, or 22q11 Deletion Syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/ hyperactivity disorder seen in most 22q11DS patients

    Car-Parrinello molecular dynamics

    No full text
    The Car-Parrinello (CP) method made molecular dynamics simulation with on-the-fly computation of interaction potentials from electronic structure theory computationally feasible. The method reformulates ab initio molecular dynamics (AIMD) as a two-component classical dynamical system. This approach proved to be valuable far beyond the original CP molecular dynamics method. The modern formulation of Born-Oppenheimer (BO) dynamics is based on the same basic principles and can be derived from the same Lagrange function as the CP method. These time-reversible BO molecular dynamics methods allow higher accuracy and efficiency while providing similar longtime stability as the CP method. AIMD is used in many fields of computational physics and chemistry. Its applications are instrumental in fields as divers as enzymatic catalysis and the study of the interior of planets. With its versatility and predictive power, AIMD has become a major approach in atomistic simulations. (C) 2011 John Wiley & Sons, Ltd
    corecore