33 research outputs found

    Profiling of the Microbiome Associated With Nitrogen Removal During Vermifiltration of Wastewater From a Commercial Dairy

    Get PDF
    Vermifiltration is a biological treatment process during which earthworms (e.g., Eisenia fetida) and microorganisms reduce the organic load of wastewater. To infer microbial pathways responsible for nutrient conversion, past studies characterized the microbiota in vermifilters and suggested that nitrifying and denitrifying bacteria play a significant role during this wastewater treatment process. In contrast to previous studies, which were limited by low-resolution sequencing methods, the work presented here utilized next generation sequencing to survey in greater detail the microbiota of wastewater from a commercial dairy during various stages of vermifiltration. To complement sequence analysis, nitrogenous compounds in and gaseous emissions from the wastewater were measured. Analysis of 16S rRNA gene profiles from untreated wastewater, vermifilter influent, and vermifilter effluent suggested that members of Comamonadaceae, a family of the Betaproteobacteria involved in denitrification, increased in abundance during the vermifiltration process. Subsequent functional gene analysis indicated an increased abundance of nitrification genes in the effluent and suggested that the nitrogen removal during vermifiltration is due to the microbial conversion of ammonia, a finding that was also supported by the water chemistry and emission data. This study demonstrates that microbial communities are the main drivers behind reducing the nitrogen load of dairy wastewater during vermifiltration, providing a valuable knowledge framework for more sustainable and economical wastewater management strategies for commercial dairies

    Alcohol, Volatile Fatty Acid, Phenol, and Methane Emissions from Dairy Cows and Fresh Manure

    Get PDF
    There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow−1 h−1 from dry cows and manure and 0.7 and 1.27 g cow−1 h−1 from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow−1 h−1 for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P \u3c 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation

    Review of research to inform California's climate scoping plan: Agriculture and working lands

    Full text link
    Agriculture in California contributes 8% of the state's greenhouse gas (GHG) emissions. To inform the state's policy and program strategy to meet climate targets, we review recent research on practices that can reduce emissions, sequester carbon and provide other co-benefits to producers and the environment across agriculture and rangeland systems. Importantly, the research reviewed here was conducted in California and addresses practices in our specific agricultural, socioeconomic and biophysical environment. Farmland conversion and the dairy and intensive livestock sector are the largest contributors to GHG emissions and offer the greatest opportunities for avoided emissions. We also identify a range of other opportunities including soil and nutrient management, integrated and diversified farming systems, rangeland management, and biomass-based energy generation. Additional research to replicate and quantify the emissions reduction or carbon sequestration potential of these practices will strengthen the evidence base for California climate policy

    Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers

    Get PDF
    Abstract Background The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM. Methods PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4). Results Macrophage exposure to PM derived from dairy farms significantly activated expression of pro-inflammatory genes, including IL-8, cyclooxygenase 2 and Tumor necrosis factor-alpha, which are hallmarks of inflammation. Acute phase proteins, such as serum amyloid A and IL-6, were also significantly upregulated in macrophages treated with PM from dairies. Coarse PM fractions demonstrated more pro-inflammatory activity on an equal-dose basis than fine PM. Urban PM collected from the same region as the dairy farms was associated with a lower concentration of endotoxin and produced significantly less IL-8 expression compared to PM collected on the dairy farms. Conclusion The present study provides evidence that the endotoxin components of the particles collected on dairies play a major role in mediating an inflammatory response through activation of TLR4 and NF-κB signaling
    corecore