7 research outputs found

    Gas-Discharge Plasma-Assisted Functionalization of Titanium Implant Surfaces

    No full text
    Abstract. A crucial factor for in-growth of metallic implants in the bone stock is the rapid cellular acceptance whilst prevention of bacterial adhesion on the surface. Such contradictorily adhesion events could be triggered by surface properties. There already exists fundamental knowledge about the influence of physicochemical surface properties like roughness, titanium dioxide modifications, cleanness, and (mainly ceramic) coatings on cell and microbial behavior in vitro and in vivo. The titanium surface can be equipped with antimicrobial properties by plasma-based copper implantation, which allows the release and generation of small concentrations of copper ions during contact with water-based biological liquids. Additionally, the titanium surface was equipped with amino groups by the deposition of an ultrathin plasma polymer. This coating on the one hand does not significantly reduce the generation of copper ions, and on the other hand improves the adhesion and spreading of osteoblast cells. The process development was accompanied by physicochemical surface analyses like XPS, FTIR, contact angle, SEM, and AFM. Very thin modified layers were created, which are resistant to hydrolysis and delamination. These titanium surface functionalizations were found to have either an antimicrobial activity or cell-adhesive properties. Intramuscular implantation of titanium samples coated with the cell-adhesive plasma polymer in rats revealed a reduced inflammation reaction compared to uncoated titanium

    Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    No full text
    By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces

    Etiology and diagnosis of acute biliary pancreatitis

    No full text
    Establishing a biliary etiology in acute pancreatitis is clinically important because of the potential need for invasive treatment, such as endoscopic retrograde cholangiopancreatography. The etiology of acute biliary pancreatitis (ABP) is multifactorial and complex. Passage of small gallbladder stones or biliary sludge through the ampulla of Vater seems to be important in the pathogenesis of ABP. Other factors, such as anatomical variations associated with an increased biliopancreatic reflux, bile and pancreatic juice exclusion from the duodenum, and genetic factors might contribute to the development of ABP. A diagnosis of a biliary etiology in acute pancreatitis is supported by both laboratory and imaging investigations. An increased serum level of alanine aminotransferase (>1.0 mu kat/l) is associated with a high probability of gallstone pancreatitis (positive predictive value 80-90%). Confirmation of choledocholithiasis is most accurately obtained using endoscopic ultrasonography or magnetic resonance cholangiopancreatography. This Review discusses the pathogenesis of ABP and the clinical techniques used to predict and establish a biliary origin in patients with suspected ABP
    corecore