42,878 research outputs found

    The Mass Function and Average Mass Loss Rate of Dark Matter Subhaloes

    Full text link
    We present a simple, semi-analytical model to compute the mass functions of dark matter subhaloes. The masses of subhaloes at their time of accretion are obtained from a standard merger tree. During the subsequent evolution, the subhaloes experience mass loss due to the combined effect of dynamical friction, tidal stripping, and tidal heating. Rather than integrating these effects along individual subhalo orbits, we consider the average mass loss rate, where the average is taken over all possible orbital configurations. This allows us to write the average mass loss rate as a simple function that depends only on redshift and on the instantaneous mass ratio of subhalo and parent halo. After calibrating the model by matching the subhalo mass function (SHMF) of cluster-sized dark matter haloes obtained from numerical simulations, we investigate the predicted mass and redshift dependence of the SHMF.We find that, contrary to previous claims, the subhalo mass function is not universal. Instead, both the slope and the normalization depend on the ratio of the parent halo mass, M, and the characteristic non-linear mass M*. This simply reflects a halo formation time dependence; more massive parent haloes form later, thus allowing less time for mass loss to operate. We analyze the halo-to-halo scatter, and show that the subhalo mass fraction of individual haloes depends most strongly on their accretion history in the last Gyr. Finally we provide a simple fitting function for the average SHMF of a parent halo of any mass at any redshift and for any cosmology, and briefly discuss several implications of our findings.Comment: Replaced to match version accepted for publication in MNRAS. Small section added that discusses higher-order moments of subhalo occupation distribution (including a new figure). Otherwise, few small change

    Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    Get PDF
    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales > 100pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.Comment: 13 pages, including 2 figures, using apjgalley format; to appear in the January 10, 2000 issue, of the Astrophysical Journa

    Thermal effects on cephalopod energy metabolism - A case study for Sepia officinalis

    Get PDF
    Cephalopods are the largest, most active invertebrates and there is considerable evidence for their convergent evolution with fishes. However, most active cephalopods display standard and active metabolic rates that are several-fold higher than comparably sized fishes. Shifting habitat temperatures due to climate change will therefore affect a cephalopods energy metabolism much more than that of a fish. Prediction of the probable outcome of cephalopod-fish competition thus requires quantitative information concerning whole animal energetics and corresponding efficiencies. Migrating cephalopods such as squid and cuttlefish grow rapidly to maturity, carry few food reserves and have little overlap of generations. This "live fast, die young" life history strategy means that they require niches capable of sustaining high power requirements and rapid growth. This presentation aims to draw a bottom-up picture of the cellular basis of energy metabolism of the cuttlefish Sepia officinalis, from its molecular basis to whole animal energetics based on laboratory experiments and field data. We assessed the proportionality of standard vs active metabolic rate and the daily energetic requirements using field tracking data in combination with lab based respirometry and video analysis. Effects of environmental temperature on mitochondrial energy coupling were investigated in whole animals using in vivo 31P-NMR spectroscopy. As efficient energy turnover needs sufficient oxygen supply, also thermal effects on the blood oxygen-binding capacities of the respiratory pigment haemocyanin and the differential expression of its isoforms were investigated.Supported by NERC grant NERC/A/S/2002/00812

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified
    corecore