11,465 research outputs found

    PID9: PATIENTS' COMPLIANCE AND COST-EFFECTIVENESS OF SELECTED ORAL ANTIBACTERIALS IN INPATIENT TREATMENT OF SKIN AND SOFT TISSUE INFECTIONS

    Get PDF

    Collective Coordinate Control of Density Distributions

    Full text link
    Real collective density variables C(k)C(\boldsymbol{k}) [c.f. Eq.\ref{Equation3})] in many-particle systems arise from non-linear transformations of particle positions, and determine the structure factor S(k)S(\boldsymbol{k}), where k\bf k denotes the wave vector. Our objective is to prescribe C(k)C({\boldsymbol k}) and then to find many-particle configurations that correspond to such a target C(k)C({\bf k}) using a numerical optimization technique. Numerical results reported here extend earlier one- and two-dimensional studies to include three dimensions. In addition, they demonstrate the capacity to control S(k)S(\boldsymbol{k}) in the neighborhood of k=|\boldsymbol{k}| = 0. The optimization method employed generates multi-particle configurations for which S(k)kαS(\boldsymbol{k}) \propto |\boldsymbol{k}|^{\alpha}, kK|\boldsymbol{k}| \leq K, and α=\alpha = 1, 2, 4, 6, 8, and 10. The case α=\alpha = 1 is relevant for the Harrison-Zeldovich model of the early universe, for superfluid 4He^{4}{He}, and for jammed amorphous sphere packings. The analysis also provides specific examples of interaction potentials whose classical ground state are configurationally degenerate and disordered.Comment: 26 pages, 8 figure

    The FIR-absorption of short period quantum wires and the transition from one to two dimensions

    Full text link
    We investigate the FIR-absorption of short period parallel quantum wires in a perpendicular quantizing magnetic field. The external time-dependent electric field is linearly polarized along the wire modulation. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. We consider the effects of a metal gate grating coupler, with the same or with a different period as the wire modulation, on the absorption. The evolution of the magnetoplasmon in the nonlocal region where it is split into several Bernstein modes is discussed in the transition from: narrow to broad wires, and isolated to overlapping wires. We show that in the case of narrow and not strongly modulated wires the absorption can be directly correlated with the underlying electronic bandstructure.Comment: 15 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Nasal carriage of Staphylococcus aureus treated with topical mupirocin (pseudomonic acid) in a children's hospital

    Get PDF
    2% mupirocin ointment applied intra-nasally for 5 days was assessed for elimination of nasal carriage of Staphylococcus aureus in 31 staff members in a children's hospital. Three volunteers failed to complete the trial because of side effects, i.e. buccal reddening and swelling, and unpleasant taste. During treatment staphylococcal nasal carriage was not found in any case; of the 24 post-treatment nasal swabs taken 4 days after treatment 22 were still negative. Re-colonization with S. aureus of different phage types occurred in the remaining two cases

    Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    Get PDF
    International audienceExperimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN) with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC) have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20?220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, extending over a period of more than one year and covering a wide range of operating conditions (650?1020 hPa ambient pressure, 0.5?1.0 L min?1 aerosol flow rate, 20?30°C inlet temperature, 4?34 K m?1 temperature gradient). For each set of conditions, the effective water vapor supersaturation (Seff) in the CCNC was determined from the measured CCN activation spectra and Köhler model calculations. High measurement precision was achieved under stable laboratory conditions, where relative variations of Seff in the CCNC were generally less than ±2%. During field measurements, however, the relative variability increased up to ±5?7%, which can be mostly attributed to variations of the CCNC column top temperature with ambient temperature. To assess the accuracy of the Köhler models used to calculate Seff, we have performed a comprehensive comparison and uncertainty analysis of the various Köhler models and thermodynamic parameterizations commonly used in CCN studies. For the relevant supersaturation range (0.05?2%), the relative deviations between different modeling approaches were as high as 25% for (NH4)2SO4 and 16% for NaCl. The deviations were mostly caused by the different parameterizations for the activity of water in aqueous solutions of (NH4)2SO4 and NaCl (activity parameterization, osmotic coefficient, and van't Hoff factor models). The uncertainties related to the model parameterizations of water activity clearly exceeded the CCNC measurement precision. Relative deviations caused by different ways of calculating or approximating solution density and surface tension did not exceed 3% for (NH4)2SO4 and 1.5% for NaCl. Nevertheless, they did exceed the CCNC measurement precision under well-defined operating conditions and should not be neglected in studies aimed at high accuracy. To ensure comparability of results, we suggest that CCN studies should always report exactly which Köhler model equations and parameterizations of solution properties were used. Substantial differences between the CCNC calibration results obtained with (NH4)2SO4 and NaCl aerosols under equal experimental conditions (relative deviations of Seff up to ~10%) indicate inconsistencies between widely used activity parameterizations derived from electrodynamic balance (EDB) single particle experiments (Tang and Munkelwitz, 1994; Tang, 1996) and hygroscopicity tandem differential mobility analyzer (HTDMA) aerosol experiments (Kreidenweis et al., 2005). Therefore, we see a need for further evaluation and experimental confirmation of preferred data sets and parameterizations for the activity of water in dilute aqueous (NH4)2SO4 and NaCl solutions. The experimental results were also used to test the CCNC flow model of Lance et al.~(2006), which describes the dependence of Seff on temperature, pressure, and flow rate in the CCN counter. This model could be applied after subtraction of a near-constant temperature offset and derivation of an instrument-specific thermal resistance parameter (RT?1.8 K W?1). At Seff>0.1% the relative deviations between the flow model and experimental results were mostly less than 5%, when the same Köhler model approach was used. At Seff?.1%, however, the deviations exceeded 20%, which can be attributed to non-idealities which also caused the near-constant temperature offset. Therefore, we suggest that the CCNC flow model can be used to extrapolate calibration results, but should generally be complemented by calibration experiments performed under the relevant operating conditions ? during field campaigns as well as in laboratory studies
    corecore