

CM-P00100666

U. Erich, H. Frank, D. Haas and H. Prange
Institut für Technische Kernphysik der Technischen Hochschule Darmstadt

Zeitschrift für Physik 209, 208-218 (1968)

Translated at CERN by H. MacCabe
(Original: German)
Not revised by the Translation Service
(CERN Trans. 71-13)

Geneva
March 1971

U. Erich, H. Frank, D. Haas ${ }^{*}$) and H. Prange
Institut für Technische Kernphysik der Technischen Hochschule Darmstadt

Zeitschrift für Physik 209, 208-218 (1968)
*) Now at the Institut für Experimentalphysik der Ruhr-Universität, Bochum.

The cross soction of ${ }^{4}$ He for elastic electron scattering has been measured relative to that of the proton using a gas target with helium, nydrogen or a mixture of both gases. Scatteing angles were between 56° and 130°, and the enersy varied from 30 to 59 liev. A model independent r.m.s. charge iadius of (I.63 +0.04) Im has been evaluated Io: the α-paiticle.

I. IMTSODUCTIOE

Abstract

Measurements of the elastic electron scattering cross section at comparatively low momentum wansiers q are used to determine the r.m.s. radius $R_{m}=\left\langle r^{2}\right\rangle^{\frac{1}{2}}$ of the nuclear charge distribution. So far, measurements of the form factor F of the α-particle have been made at high momentum transfers (see References 1 to 7); they can be used to derive a charge distribution and hence to calculate R_{m}. The determination of R_{m}, on the other hand, is equivalent to a statement regarding $d F / d q^{2}$ for $\mathrm{q}^{2} \rightarrow 0$. The data communicated below will extend the experiments carried out to date to low momentum transfers, allowing R_{m} to be indicated independently of model assumptions.

Abstract

We have used a cas varcet and have examined holiun in relation to hydrogen. Zxcept for the efrects connected with the diverse recoil energies, the scattering on 4_{He} and ${ }^{H}$ has been


```
observed undez identical conditions. The recoil variations also
allow measuremonts to be made wi th mixtures of sases, making it
possible to eliminate, for instance, time-dependent chenses 0:
the entire assembly to a large extent. Using the known values oi
\sigma (for the sake of simplicity, \sigma vill henceforth be used to
designate d\sigma/d\Omega), the scattering cross`section }\mp@subsup{\sigma}{\alpha}{}\mathrm{ is determined
from the experimentally obtain=d cross section ratios }\mp@subsup{\sigma}{\alpha}{}/\mp@subsup{\sigma}{\eta}{~
F}\mp@subsup{F}{m}{}(\alpha)\mathrm{ is thon derived from the differences between this cross
section and that for a point nucieus. However, those differencee
are so small within the examined q-range that, in evaluating the
form factor, allowance must also be made for the small differences
between the first Born approximation and on exact calculation
despite the atomjc number Z = 2.
    The referonce cross section \sigma p has been calculated with
the Rosenbluth formula, using form Iactors obtained from previous
publications. However, oving to the smallness of the proton radius,
the uncertainties with respect to the latter reflect only to a small
extent on the radius oif the \alpha -paiticle as determined by us.
```

A brief review of the first results has already been
published (see Reference 8). The accuracy of the measurements has
meanwhile been increased by the use of a gas target cooled to $90^{\circ} \mathrm{K}$
and possessing a higner density. In addition, an improved procedure has been applied to the partial wave calculations (see ioot-notes 9 to 11) and the systematic erior sources have been examinsd in sreater detail.

2. TXP Timmatial ASSEMBIY

The basic measuring procedure is show in the diagram in Figure 1. Behind the analysing system, the electron beam From the Darmstadt linear accelerator (see Reference 12) is focussed onto the centre of the scattering chamber (beam diameter $<3 \mathrm{~mm}$), which contains a thin-walled pressure vessel as the tareet. The unscattered electrons go into a beam trap. The change collected there serves to measure the number of incident tareet electrons. It is expressed by the countins rate. Nultiple scattering prevents a small number of electrons from being caught in the beam trap, but since, in proctics, only the target wall produces this effect, the resulting loss is independent of the gas filling. The $=$ lectrons thich have been scattered at an angle θ in the gas enter a double-focusing magnetjc spectrometer of 120°. Blectrons which are scattered at the target walls cannot reach the spectrometer directly, but they produce, through double or multiple scattering, a background which cen be measured when the target is empty and which is significantly re-
duced by the diaphragm installed between the target and the spectrometer.

```
    For sixteen measurements, a coincidence assembly consisting
of two plastic scintillators behina a tungsten diaphragm served as
detector (see Reference 12). Afterwards, fourteen measurements were
made with a non-coincidence five-channel detector consisting of five
closely placed plastic scintilletons (li x ll x l mm}\mp@subsup{}{}{3}\mathrm{ ). Owing to
the recoil, the hydrogen and the helium linss are 3.9 HeV apart at
the highest momentum transier. An energy-dependent counter yield
probability would have necessitated a correction or the experimental
values, but test measurements have shown that this erfect accounts
for less than 0.3% in \sigma. This uncertainty has also been taken into
account in the evaluation of the error of 哌m
    Figure 2 shows a tarset assembly for measurements at the
temperature of liquid nitrogen. There was no bacinground increase
compared with the targets not subjected to cooling (without cooling
vessel), but, at the same Fressure, tho gas density is considerably
higher. Whereas the determination of \mp@subsup{\sigma}{\alpha}{}/\mp@subsup{\sigma}{\rho}{}}\mathrm{ at room temperature
included also individual measurements (precision of pressure measure-
ment : 0.3%), only mixtures were used at low temp:ratures. the density
ratio of the two gases was ascertained with a mercury pressure gause
```

to an accuracy of 0.2% at room temperatuae and under low prossure at the time when tie mixture was produced. After the two components had been carefully mixed, the gas was brought up to the worising pressure in the target (approximately $10 \mathrm{kp} / \mathrm{cm}^{2}$) by means of a Toepler pump. With a filled and cooled target, the temperature increase of the target wall (obtained with Au/Co-Fe thermocouples) amounted to approximately 2° for a beam current of 1 ch (about 80° for the evacuated target). Since the rolume of the gas in the target was closed off, the density of the gas was not affected by the change in temperature.

3. Gasumbere ap evaluation

Figure 3 shows a typical spectrum, obtained with a mixture of helium and hydrozen at $90^{\circ} \mathrm{K}$. It indicates the "countine rate" ζ (i.e. the numbez of pulses in relation to the cherge collected in the beam trap) as a function of the electron energy. The points given by the experinent were corrected for the dead time losses of the counters (< 1\%). Two lines are apparent; compared with the pre-scattering energy E_{0} they shom a shift amounting to the relevant recoii energy, The line widths are detemined by the form of the primary spectrum, the energy resolution of the spectrometer, the energy loss and scattering at the target walls, and the finite solid
angle (recoil energy variation with θ). In the example of Figure 3, the last effect is dominant and the H-line is thus wider than the He-line. In order to evaluate the areas z_{i} below the iines ξ_{i} (equation $1 b$), the bacigground, obtained with the evacuated target, was first deducted from ξ. To the right of the He-line, the baciground was the same with and witwout the gas fijings; hence, the scattering within the gas does not produce any measurable additional background. Anothe: measurement with helium alone aliowed the portion of the helium line below the hydrogen line to bo obteinea. The connection between $\sigma(\equiv d \sigma / d \Omega)$ and the experinental values is given by

$$
\begin{equation*}
\sigma_{\Omega} / \sigma_{p}=\left(z_{\alpha} / z_{p}\right) \cdot\left(N_{p} / N_{\alpha}\right) \cdot\left(K_{p} / K_{\downarrow}\right) \tag{1a}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{t}=\int_{a}^{b} \zeta_{1} d E / E . \tag{Ib}
\end{equation*}
$$

The index indicates the scatterins nucleus. The ratio of the target nuclei per volume $\mathrm{I}_{\mathrm{n}} \mathrm{m}$ was calculated from the pressure ratio, allowance bejns made fur the viriai coefficients for ral gases. The Iactor $1 / E$ in the Ine integnel in equation (Ib) takes the dispersion of the spectroneter into account. The choice of the upper

```
integration limit b in; not a problom, because tho counting rate
drops to the background. In viev of tie eviension at lov energies
(radiation tail), howevsw, the cut-ozf at the lowcr limit a calls
for a correction K. in a gas barget, the corrections fow the brems-
strahiung and eneigy loss distribution are cetemmed by the target
wall; for He and H, tie coincidence is better than 0.1%. Accondingly,
K}/\mp@subsup{N}{~}{\prime
corrections and has bonn calculated in accordance with the formula
indicated by TSAI (see Reference 14, with Z = I for H and Z = 2 for He
in equation III,22). Iror the purpose of introducing the cut-off
```



```
the helf-width of the line. The seme\DeltaE was also chosen for the
proton; it amounted to two to three half-widths of the lines. A
    \DeltaT-dependence of the iatio 朤/\sigma ; , evalueted in accordance with
equation (la), coula not be established within this range.
With the calibration of the spectrometer known to an accuracy of \(0.1 \%\) (see Reference 12), the mean electron energy \(\mathrm{E}_{\mathrm{o}}\) in the laboratory system prior to scattering was obtained from the position of the lines \(E_{\infty}\) resp. \(E_{p}\), and correction was made for the energy loss in the target wall and in the gas. The uncertainty of \(\mathrm{E}_{0}\) anounted to less than \(0.2 \%\).
```

The cross sections in equation (I) should be averages over the finite solid angle defined by the diaphragms and the multiple scattering in the target wall. No account was taken of this fact because, with the scattering angles examined here, the use of the averages would have changed the ratio $\sigma_{\alpha} / \sigma_{\rho}$ in equation (la) by less than 0.1\%.

The cross section σ_{p} was calculated with the Rosenbluth formula

$$
\begin{array}{ll}
\sigma_{p}=\sigma_{0}\left[\left(G_{E}^{2}+\tau^{2} G_{M}^{2}\right) /\left(1+\tau^{2}\right)+2 \tau^{2} G_{M}^{2} \cdot \operatorname{tg}^{2}(\Theta / 2)\right] \\
\tau=\hbar q_{p} / 2 M_{p} c ; & \hbar^{2} q_{p}^{2}=\left(\vec{p}_{1}-\vec{p}_{2}\right)^{2}-\left(E_{1}-E_{2}\right)^{2} / c^{2} \tag{2a}\\
\sigma_{0}=\sigma_{M} / \eta_{p} & \text { (see equation (6)). }
\end{array}
$$

In the above, $G_{E}\left(q_{p}\right)$ and $G_{M}\left(q_{p}\right)$ are the form iactors for the charge resp. magnetic moment distribution of the proton; thuir dependence on the momentum transfer q_{p} is obtained from the results of high energy electron scattering. As the contribution of the terms involving $G_{\text {I }}$ is small in the examined angular range, any difference between G_{E} and $G_{M} / 2.793$ can be ignored; a good fit is obtained with the assumption that $G_{D}=G_{1 /} / 2.793=G \quad$ (see Reference 15). For $R_{p}=0.80 \mathrm{fm}$, this form factor was calculated according to HOFSTADTER [following a private communication (mean for LandoltBörnstein) as per Reference 16] in the approximation

$$
\begin{equation*}
G=1-r_{p}^{2} q_{p}^{2} / \sigma+r_{p}^{4} q_{p}^{4} / 48 \tag{2b}
\end{equation*}
$$

the contribution of the higher terms of the charge distribution (which is small for $q_{p}^{2}<0.3 \mathrm{fm}^{-2}$) being accounted for by the second term of the series expansion for the form factor of an exponential charge distribution (see References 16, 17). In equation (2a), σ_{0} equals the rott cross section for a point nueleus winout spin, multiplied by the recoil term $1 / \eta$ (as in equation (6)).

Table l shows the results of all the measurements. They are listed according to the values of q^{2} and marked to show the experimental conditions, i.e. whether He and H_{2} were examined individually one after the other (3) or simultaneously in a mixture (H), whether the measurements were made at low temperature (x) or at room temperature (y), and what detector system (v or w) was used. The other letters indicate the scattering angles of the spectrometer settings.

```
Equation (2) allows \(\sigma_{\alpha}\) to be calculated from the experimental values \(\sigma_{\alpha} / \sigma_{\rho}\). The relative error of \(\sigma_{\alpha} / \sigma_{\rho}\) is equal to the error \(\Delta F^{2} / I^{2}\) set out in the last column. It consists of the errors of \(N_{\underline{D}} / T_{\alpha}\) and \(z_{\alpha} / z_{p}\); the inaccuracy of the area determination \(z_{i}\) (which results from the counting otatistic anci from moertaintios due to small energy changes during measuacnent) is predominent. Whough \(\sigma_{p}\), the cross section \(\sigma_{\alpha}\) is also aflectod by the energy error. Howeven,
```

for $\Delta E / \mathbb{D} \leqq 0.2 \mu$, the term $\Delta \sigma_{\alpha} / \sigma_{\alpha}$ is, in mactice, also equal to the figures in the last colurn.

4. RADIUS ON THE α-DMTICL

$R_{m}(\alpha)$ can be obtained from the experimental cross sections σ_{α} by a fit with theoretically detemined cioss sections. Since, for $Z=2$, the first Boin approximetion dirfers little from the exact caiculation, this difference was calculated for a nucieus wita $\mathrm{Z}=2$, using a Gaussian function for the charge distribution and $R_{m}=1.63 \mathrm{fm}{ }^{(*)}$, so as to add it, for the evaluation of σ_{α}, as a correction $\varepsilon(\mathcal{Q}, \Xi)$ to the first Born approzimation. In this way,
 perinentally obtained cross section.

BUHRING's Programme (see References 9 to 11) was used for the calculation with the partial wave method, the correction being celculated according to equation (3)

$$
\begin{equation*}
\sigma_{s}=\sigma_{\mathcal{M}} \cdot F^{2}(q)\left(1+\varepsilon\left(\theta_{s}, E_{s}\right)\right) \tag{3a}
\end{equation*}
$$

(*) ε bcinc small, the difference between this preselccted radius and the radius obtained in the evaluation can be neglected here, being a hicher order correction.
(**) defincd as Fourien transform of the charge distribution.

W: th the mott cross section

$$
\begin{equation*}
\sigma_{M}=\left(\frac{Z e^{2}}{2 E_{s}}\right)^{2} \cdot \frac{1-\beta^{2} \sin ^{2}\left(\Theta_{s} / 2\right)}{\beta^{4} \sin ^{4}\left(\Theta_{s} / 2\right)} \tag{3b}
\end{equation*}
$$

Fiere, the first terms of the series expansion

$$
\begin{equation*}
F(q)=1-\frac{1}{6}\left\langle r^{2}\right\rangle q^{2}+\frac{1}{120}\left\langle r^{4}\right\rangle q^{4}-+\cdots \tag{4}
\end{equation*}
$$

provide a surficient degree of accuracy for the form factor.

The index s indicates the center-of-mess system (*); vaiued without indices relate to the laboratory syster. The Iorentz-invariant \mathfrak{i} our momentur transicr g is obtained from

$$
\begin{equation*}
q=\frac{2 E_{s}}{\hbar c} \cdot \sin \frac{\theta_{s}}{2}=\frac{2 E}{\hbar c} \cdot \frac{\sin (\theta / 2)}{\sqrt{\eta}} \tag{5a}
\end{equation*}
$$

whore

$$
\begin{equation*}
\eta=1+(i-\cos \theta) E / M c^{2} \tag{5b}
\end{equation*}
$$

The conversion of the cross section from the center-of-mass system to the laboratory system gives

$$
\sigma(\theta, E)=\eta^{-1} \sigma_{M}(\Theta, E) F^{2}(q)\left(1+\varepsilon\left(\Theta_{s}, E_{s}\right)\right),
$$

(*) The cross sections calculated for a nucleus with infinite mass have been put equal to the required cross sections in the center-ofmass system.
if, in σ_{M} (see equation (3b)), θ_{S} and are replaced by the Iaboratory ayntem values θ and E_{s} ma θ_{s} were derived from E resp. θ according to DEDRICK (see Reference 18). The second powers of the form factors, obtained from σ_{α} by moans of equation (6), are set out in rablo 1 togethor with their errows.

The form factor thus derived should only depend on q^{2} (and not individually on E and θ) (sec, for instance, Figure 4). In perticular, the experimental values should permit an extrapoletion to $F=1$ for $q^{2}=0$. In evaluating $R_{H}(\alpha)$ by applying a leasi squares fit to equation (4), account was also taken of the small contribution of the higher terms of the ohere distribution in F , a Gaussian function bsing assuned. In owder to test for systematic errors, a fit was also made to a function with a fres scale factor B :

$$
\begin{equation*}
F^{2}=B \exp \left(-R_{m}^{2} q^{2} / 3\right) \tag{7}
\end{equation*}
$$

The results are set out in lines 3 and 4 of Table 2.

Another correction sucsects itself; it conceuns the proton cross section and takes account of the difierence we must expect between the true cross section and the aosenbluth fomule in the first Born aoproximation. In analogy to the calculation made for the α-particle, a correction $\varepsilon_{p}(\Theta, z)$ was computed, using the
partial wave method, for a nuclub without spin for $Z=l$ and $P_{p}=0.8$ im. It amounts to Evongmately 1% and is inclued in rabic 1 in order to allow an easy convarion of σ_{α} and F^{2} by multiplyine with $\left(1+\varepsilon_{p}\right)$. The result of the ovaluation with this corection (for ε_{p}, see Table 1) is shom in the first two lines of Table 2.

Both for $\varepsilon_{p} \neq 0$ (first lin) and for $\varepsilon_{p}=0$ (third line), the value for the free scale factox B is compatible with $B=I$ within the statistical errors. Thus, both evaluations, taken individually did not indicate any systematic amons, so that an evaluation using a given fixed $B=1$ might som juotified. However, the differences in the ordinate sections show hov syotumatic scale eriors can be introduced by the choice of the evaluation. If, therefone, the difference $E-1$ is assumed to be most probable scale error in each case, and if R_{m} is evaluated on the basis of the fit without the constraint $F^{2}=1$ for $q=0$, the result, compared with the $B=I$ evaluation, shows little variance. For the purpose of comparison, the result of the first Born approrimation is show in lines 5 and 6. Were, the difference between B and $B=1$ is more than twice the statistical error, whereas, for a preselected fixed $B=1$, a considerably larger value of χ^{2} is found than for all other fits. The fact that the P_{m} differences aze small for a free B (first, third and fifth lines)
is explained by the small variation of the ε - corrections with q within the sonsidered angular range.

Figure 4 show the Porm foctors obtained with $\varepsilon_{p}=0$ and $\varepsilon_{\alpha} \neq 0$. The expenimental values cor identical momentum transfers have been combined in a mean value with a correspondingly reduced erros. In one instance $\left(r^{2}=0.109 \mathrm{fn}^{-2}\right)$, the figure shows, in addition, the angular distribution of the relevant experimental values. Within the measuming erwos, the expected independence of

 contaning $\left\langle r^{2}\right\rangle$ in equation (4). Both curves have been calculated with $\mathrm{R}_{\mathrm{m}}=1.64 \mathrm{fr}$. The igure shows the small influence of the tem containing $\left\langle\mathrm{r}^{4}\right\rangle$ in equation (4), hence the independence from special model assumntions.

We must still consider the fact that we have used form factors for σ_{p} mich have been derived from a ist of the Rosenbluth formula (without corrections) to high energy measuements. Wherefore, a somewhat smallor ε_{p} should probably be chosen than indicated in Table 1 or, conversely, a somewhat lemser R_{p} should be assumed. ε_{p} being small for the form factoms obtained at high energies, the change to be expected in P_{p} should be smallor tian the errors indicated

```
by HORSTADTER ( \(\left.\bar{n}_{p}=0.80 \pm 0.02 \mathrm{In}_{\mathrm{n}}\right)(\) sce foot-note 16\()\) and has there-
fore not been taken into consideration here.
    In accordance with line 1 of Table 2, we indicate
\[
R_{m}=\left\langle r^{2}\right\rangle^{\frac{1}{2}}=(1,63 \pm 0,04) \mathrm{fm}
\]
as the current result for the r.m.s. charge radius of the \(\alpha\)-particle. The error takes account of the uncertainty applying to the proton radius and to the counter yield probability (Chaptew 2); it further includes the values obtained by the other evaluations (lines 2 to 4). Our value for \(R_{m}\) should be compared with the following published values : (1.60 0.1)fm (see Reference 2), (1.68 0.04) fm (see References 4 and 7), 1.71 fm (see Reference 7) , a Gaussian function for the charge distribution having been assumed for the first two values, a Fermi function with 3 parameters for the lest. Since these values are based on masurements of high monentum transiers, \(P_{m}\) varies with the chosen cherge distribution model (see, for instance, References 6 and 7 for other data concerning the radius and Reference 5 for other form factor fits which give \(1.49 \mathrm{fm} \leqq \mathrm{R}_{\mathrm{m}} \leqq\) l. 60 im ). The radius indicated by us is free from such an uncertainty.
The experiments are being continued with the aim of reducing both the experinental errors and the uncertainties in the evaluation.
```

In addition, a re-examination of the theory of radiation corrections could, at the accuracy reauired here, influence the calculation of the radius.

To Professor Dr. P. Brix; who suggested the work, we wish to express our particular gratitude for many productive discussions. We are indebted to Dr. R. Engier, Dr. W. Buhring and H.A. Bentz for the computing programmes placed at our disposal and for their valuable support, to Dr . A. Körding for his critical examination of the manuscript and to H. Schnitger and K.J. Böttcher for their help with the experiments. Work done by the entire DALINAC Group furnished essential experimental prerequisites and we take this opportunity to extend to them our cordial thanis.

This work was sponsored by the Buncesministerium fur wissenschaftliche Forschung.

REFERENCES

1) R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
2) R.W. McAllister and R. Hofstadter, Phys. Rev. 102, 851 (1956).
3) R. Blankenbecler and R. Hofstadter, Bull. Am. Phys. Soc. 1, 10, AB6 (1956).
4) G.R. Burleson and H.W. Kendall, Nuclear Phys. 19, 68 (1960).
5) J.P. Repellin, P. Lehmann, J. Lefrançois and D.B. Isabelle, Phys. Letters 16, 169 (1965).
6) R.F. Frosch, R.E. Rand, K.J. van Oostrum and M.R. Yearian, Phys. Letters 21, 598 (1966).
7) R.F. Frosch, J.S. McCarthy, R.E. Rand and M.R. Yearian, Phys. Rev. 160, 874 (1967).
8) H. Frank, D. Haas and H. Prange, Phys. Letters 19, 391 (1965).
9) W. Bühring, Z. Physik 187, 180 (1965).
10) W. Bühring, Z. Physik 192, 13 (1966).
11) H.A. Bentz, R. Engfer and W. Bühring, Nuclear Phys. A101, 527 (1967).
12) F. Gudden, G. Fricke, H.G. C1erc and P. Brix, Z. Physik 181, 453 (1964).
13) M. Stroetzel, Laborbericht Nr. 19, Institut für Technische Kernphysik der T.H. Darmstadt (1965).
14) Tsai, Yung-Su, Phys. Rev. 122, 1898 (1961).
15) B. Dudelzak, Thèse, Orsay, Série A, No. 103 (1965).
16) R. Hofstadter, Private Mitteilung (Mittelwert für Lando1tBörnstein).
17) L.H. Chan, K.W. Chen, J.R. Dunning Jr., N.F. Ramsey, J.K. Walker and R. Wilson, Phys. Rev. 141, 1928 (1966).
T. Janssens, R. Hofstadter, E.B. Hughes and M.R. Yearian, Phys. Rev. 142, 922 (1966).
18) K.G. Dedrick, Rev. Mod. Phys. 34, 429 (1962).

Table 1 : Parameters and Experimental Zesuits

 $0,10916 \quad 57,96 \quad b, x, w, M \quad 1,0048 \quad 536 \quad 3,760 \quad 3,699 \cdot 10^{-3} \quad 1,42 \quad 0,83 \quad 0,8950 \quad 1,0$ $0,10940 \quad 38,55 f, y, v, E \quad 1,0054520 \quad 3,652 \quad 6,398 \cdot 10^{-4} \quad 1,881,050,88631,5$ $\begin{array}{lllllllllllll}0,10940 & 38,55 & f, y, v, E & 1,0054 & 480 & 3,728 & 6,532 \cdot 10^{-4} & 1,88 & 1,05 & 0,9049 & 1,5\end{array}$

 $0,13307 \quad 50,00 \quad d, y, w, E \quad 1,0053413 \quad 3,674 \quad 1,247 \cdot 10^{-3} \quad 1,64 \quad 0,95 \quad 0,8731 \quad 1,5$

 $0,19006 \quad 54,72 e, y, v, E \quad 1,0060646 \cdot 3,4755,383 \cdot 10^{-4} \quad 1,6000930,83231,5$ $0,19026 \quad 54,75 \quad e, y, v, E \quad 1,0060 \quad 646 \quad 3,443 \quad 5,328 \cdot 10^{-4} \quad 1,600,98 \quad 0,8245 \quad 1,5$ $\begin{array}{lllllllllll}0,19047 & 54,78 & e, y, v, E & 1,0060 & 646 & 3,538 & 5,469 \cdot 10^{-4} & 1,60 & 0,98 & 0,8473 & 1,5\end{array}$

$0,2793358,50 \quad g, x, w, M 1,00724712,892 \quad 1,276 \cdot 10^{-4} 1,531,020,76291,8$
$0,28103 \quad 58,68 \quad g, x, w, M \quad 1,0070460 \quad 2,995 \quad 1,315 \cdot 10^{-4} \quad 1,531,02 \quad 0,79051,6$

$\sigma_{\alpha} / \sigma_{p}$ are the values obtainod from the experiments; they have
been used to determine σ_{α} and F^{2} ior $\varepsilon_{\alpha} \neq 0$ and $\varepsilon_{p}=0$.
The scattering angles are : $a=56.77^{\circ} ; b=68.33^{\circ} ; c=20.92^{\circ}$;
$\mathrm{d}=92.91^{\circ} ; \mathrm{e}=104.98^{\circ} ; \hat{\mathrm{f}}=117.04^{\circ} ; \mathrm{g}=129.02^{\circ}$;
$x=$ measurement at $T=90^{\circ} \mathrm{K} ; \mathrm{y}=$ measurement at room temperature;
$V=$ coincidence counters; $w=5$ aetector system; measuiements made
for He and H_{2} in sequence (B) or simultaneousiy (in).

Table 2 : Results of the titwith λ^{2}-test
 $$
(f=\text { number of degeres of Sreadom })
$$

The errors cited here are statiotionl crave only.

	B	x^{2} / f	R_{m} [fm]
$\varepsilon_{a} \neq 0, \varepsilon_{p} \neq 0$	$1,0046 \pm 0,005:$	$\begin{aligned} & 0,936 \\ & 0,931 \end{aligned}$	$\begin{aligned} & 1,63_{3} \pm 0,034 \\ & 1,60 \pm \pm 0,017 \end{aligned}$
$\varepsilon_{a} \neq 0, \varepsilon_{p}=0$	$\begin{aligned} & 0,9976 \pm 0,0051 \\ & 1^{9} \end{aligned}$	$\begin{aligned} & 0,918 \\ & 0,896 \end{aligned}$	$\begin{aligned} & 1,64_{7} \pm 0,034 \\ & 1,66_{0} \pm 0,017 \end{aligned}$
$\varepsilon_{\alpha}=0, \varepsilon_{p}=0$	$\begin{aligned} & 1,0130 \pm 0,0051 \\ & 1^{a} \end{aligned}$	$\begin{aligned} & 0,939 \\ & 1,128 \end{aligned}$	$\begin{aligned} & 1,64_{3} \pm 0,034 \\ & 1,56_{9} \pm 0,017 \end{aligned}$

a) assuming $B=1$.

Figure 1 : Diagram of the ixperimental Assembly

Iesend: zur suektrometer = to the spectrometer;
Streukemer = scattering chambez;
Primarstrahl = primary beam;
Al-Blende $=$ Al diaohragm;
Fdelstahl = tungsten steel;
Gastarget = gas target;
zum Strahlfänger $=$ to the beam trap.

Figure 2: Cooled gas target

(target cylinder shown in profile)

Legend : Gaszufthrung = gas input;
Streukamerdeciel = lid of scattening chamber;
Kuhlgefass = cooling vessel;
Elektronenstrahl = electron beam.

Figure 3 : Flectron scattering spectrum in a $\mathrm{H}_{2} /$ He mixture

$T=90^{\circ} \pi, \quad \underline{p}_{g a s}=9.45 \mathrm{kp} / \mathrm{cm}^{2} ; p\left(H_{2}\right) / \mathrm{p}(\mathrm{He})=1.911$;
Full circles : background ($\approx 0.4 / \mu \mathrm{As}$).
Below the $H_{2}-$ line (at E_{p}), the separately established portion of the He-line is indicated.

Figure 4 : Form factor of the α-particle as a function of a^{2}

For the purposes of this Figure, the mean of the values indicated in Table 1 has been taken for each q^{2}.

Upper right : For $q^{2}=0.109 \mathrm{fm}^{-2}$, the individual measurements are shown as a function of tho angle (identical ordinate scale).
Jnxintexinionex curve : $F=\exp \left(-R_{m}^{2} q^{2} / 6\right)$
antaxixping curve : $\mathrm{F}=1-\mathrm{R}_{\mathrm{m}}^{2} q^{2} / 6$

