19,358 research outputs found

    D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    Full text link
    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references adde

    Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem

    Get PDF
    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's Problem - a black box period-finding problem which has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's Problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.Comment: 9 pages, 5 figure

    Low-decoherence flux qubit

    Full text link
    A flux qubit can have a relatively long decoherence time at the degeneracy point, but away from this point the decoherence time is greatly reduced by dephasing. This limits the practical applications of flux qubits. Here we propose a new qubit design modified from the commonly used flux qubit by introducing an additional capacitor shunted in parallel to the smaller Josephson junction (JJ) in the loop. Our results show that the effects of noise can be considerably suppressed, particularly away from the degeneracy point, by both reducing the coupling energy of the JJ and increasing the shunt capacitance. This shunt capacitance provides a novel way to improve the qubit.Comment: 4 pages, 4 figure

    An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches

    Full text link
    We review and expand on a Bayesian model selection technique for the detection of gravitational waves from neutron star ring-downs associated with pulsar glitches. The algorithm works with power spectral densities constructed from overlapping time segments of gravitational wave data. Consequently, the original approach was at risk of falsely identifying multiple signals where only one signal was present in the data. We introduce an extension to the algorithm which uses posterior information on the frequency content of detected signals to cluster events together. The requirement that we have just one detection per signal is now met with the additional bonus that the belief in the presence of a signal is boosted by incorporating information from adjacent time segments.Comment: 6 pages, 4 figures, submitted to AMALDI 7 proceeding

    Meta-Stable Brane Configuration and Gauged Flavor Symmetry

    Get PDF
    Starting from an N=1 supersymmetric electric gauge theory with the gauge group Sp(N_c) x SO(2N_c') with fundamentals for the first gauge group factor and a bifundamental, we apply Seiberg dual to the symplectic gauge group only and arrive at the N=1 supersymmetric dual magnetic gauge theory with dual matters including the gauge singlets and superpotential. By analyzing the F-term equations of the dual magnetic superpotential, we describe the intersecting brane configuration of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory.Comment: 16 pp, 3 figures; stability analysis in page 7 and 8 added and the presentation improved; reduced bytes of figures and to appear in MPL
    • …
    corecore