2 research outputs found

    Genetic characteristics influence the phenotype of marine macroalga Fucus vesiculosus (Phaeophyceae)

    Get PDF
    Intraspecific variation is an important component of heterogeneity in biological systems that can manifest at the genotypic and phenotypic level. This study investigates the influence of genetic characteristics on the phenotype of free-living Fucus vesiculosus using traditional morphological measures and microsatellite genotyping. Two sympatric morphotypes were observed to be significantly genetically and morphologically differentiated despite experiencing analogous local environmental conditions; indicating a genetic element to F. vesiculosus morphology. Additionally, the observed intraclonal variation established divergent morphology within some genets. This demonstrated that clonal lineages have the ability to alter morphological traits by either a plastic response or somatic mutations. We provide support for the potential occurrence of the Gigas effect (cellular/organ enlargement through genome duplication) in the Fucus genus, with polyploidization appearing to correlate with a general increase in the size of morphological features. Phenotypic traits, as designated by morphology within the study, of F. vesiculosus are partially controlled by the genetic characteristics of the thalli. This study suggests that largely asexually reproducing algal populations may have the potential to adapt to changing environmental conditions through genome changes or phenotypic plasticity.Peer reviewe

    Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients

    Get PDF
    Since the past century, rising CO2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO2 treatments (triangle CO2 similar or equal to 450 mu atm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 degrees C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. (C) 2017 Elsevier Ltd. All rights reserved.Peer reviewe
    corecore